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Introduction

The present monograph reports our work during the PhD project Automating
Coherent Logic (ACL) at University of Bergen, Norway.

The thesis consists of two parts covering proof theory and lambda calcu-
lus. Although the focus in each case is somewhat different, both investiga-
tions stress the syntactic approach to the study of proofs and terms.

The two subjects are closely related through type theory, via the result
known as Curry-Howard isomorphism. This is a statement of correspondence
between proofs of logical formulas on the one hand, and lambda terms and
their types on the other.

The two parts also differ in the style and character of the writing. This
structure of presentation was driven by the desire to help the readers of
diverse motivations access the information most relevant to their interests as
expediently as possible.

Part I, written with the view toward practical applications, describes in
detail the development of an efficient translation algorithm from first-order
logic to coherent logic. It can be read as a report on the ACL project itself,
as a technical manual for the translator that we developed, or as a general,
gentle introduction to coherent logic. We hope it may be helpful to future
developments in the subject.

Part II presents some results in the pure lambda calculus. Our main
contribution is the refutation of the range property for H — a conjecture
of Barendregt concerning images of A\-terms modulo identification of mean-
ingless terms. This part contains the primary mathematical content of the
thesis. Accordingly, its style is formal and its goal is to present the proofs as
concisely as possible.

The unifying theme of this thesis is the relationship between logic and
computation, as mediated by type theory. Thus the core formalism studied
in each parts is based on a Turing-complete programming language, giving



it universal computational capabilities. Yet it is the logical content of the
programs which makes it interesting to study them.

In Part I, the logical content of programs is just the usual Curry-Howard
isomorphism between proofs and types. Because the proof theory of coherent
logic is constructive, any proof produced by a coherent prover can be readily
transformed to a lambda term inhabiting the corresponding type. With the
translation from first-order logic that we develop, this property of coherent
logic allows one to build a fully automated first-order prover whose proof
objects are acceptable in the various interactive proof environments used for
formalizing mathematics.

In Part II, our counterexample to the range property requires deciding
Y1-sentences at every stage of the construction. The logical power of such
sentences is equivalent to the halting problem, so these decisions cannot be
done computably. We circumvent this difficulty by using equality of the A-
theory H, which is Ils-complete. As a result, the construction is rendered
sufficiently effective to be realizable in a lambda term.

The translation algorithm developed in Part I has been fully implemented
using the LISP language. We will be happy to provide the source code to
the reader upon request.

For comments, questions, or anything else, please contact the author at
andrew.polonsky@gmail.com.

Finally, I would like to express my gratitude to the following people.

Marc Bezem, for being the best PhD advisor I've ever had.

Stefan Berghofer and John Fisher, for very productive and rewarding
collaboration on the project.

Dag Hovland, for being a great officemate during my PhD years. Also,
I thank all my friends and acquaintances at the informatics institute at the
university in Bergen for all their help and stimulation.

I would like to thank my family, which brought me to the point at which
I could even write this thesis — especially Oksana, Sergiy, Maxim, and Rose-
mary. [ am forever grateful to Amy Dunbar, John Phillips, and Joel Marks
for making my university education possible. Joel inspired me to pursue
science more than any other person.

I would also like to thank the amazing faculty at the department of math-
ematics at the University of Connecticut. [ am especially grateful to my
academic parents Stuart Sidney, Keith Conrad, Rich Bass, Tara Holm, Ron
Blei, and Wolodymyr Madych.

Finally, T thank all the people that made my years in Bergen as fun as
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they were: our “D12 family” at Fantoft, my Russian friends Boria, Gleb,
and Max, my fellow logicians Paul Simon, Truls, and Piotr, and everyone
else who made Bergen such an exciting part of my life.

I thank Irine Rgsnes for infinite inspiration.

December 4, 2010
Amsterdam

Andrew Polonsky



Part 1

Coherent Logic



Chapter 1

Aspects of Coherent Logic

Coherent logic, which will henceforth be usually abbreviated as “CL”, can
be viewed from many angles. Although formally it is only a fragment of full
first-order logic (FOL), CL theories can be used to represent arbitrary FOL
formulas, and the correspondence extends to the level of proofs as well. Yet
it is the remarkable stock of features native to CL itself which makes this
correspondence useful. For example, proof-theoretic analysis of CL sheds
new light on Skolemization — a concept dating back to the earliest results of
mathematical logic — with useful applications in both theory and practice.
Coherent logic is the subset of FOL consisting of formulas of the form

At A AA, =BV By, (1.1)
Wlth BJ = Elgc%l VANILILIVAN Cij

Here A; and C}; are atomic formulas, and the entire expression is im-
plicitly universally closed (so while we don’t write the quantifiers, the free
variables of the clause are always quantified over on the outside). One can
view the above definition as an extension of resolution logic; while resolution
requires that all of A, and B; are atoms, CL allows B; to contain existen-
tially quantified conjunctions of atoms. This simple relaxation has a number
of significant consequences.

Notice that every logical connective occurs in the general format above —
this is what allows CL to represent full first-order logic. Most importantly,
the presence of existential quantifiers makes Skolemization unnecessary in
translation from FOL to coherent clauses. This motivates the main practical
application of CLL — as an automated prover logic from which proof objects



could be recovered without the infamous problems caused by introduction of
Skolem functions (Bezem et al. [2000]).

The question is whether the above property can be exploited to create an
efficient first-order prover with explicit proof objects. The translation from
general first-order formulas into the coherent fragment would be the central
piece of any such system, and this is the primary focus of our investigation
here. We develop a translator which is flexible, practically useful, and keeps
the task of proof reconstruction easy.

To give the reader a feeling for what CL has to offer, we briefly discuss
some of the unique features of this curious logic.

1.1 A positive dimension of first-order logic

CL consists of clauses which contain only positive operators on both sides
of the arrow. This motivates the forward proof search which proceeds by
extending the proof state with atoms on the right of a clause whenever one
has satisfied all of the atoms on the left. A fundamental result of CL is that
this proof procedure is complete — that is, any fact logically entailed by a
CL theory will be found by the forward search.

One consequence of the completeness theorem is that the proof theory of
CL becomes very simple, having just a single rule of deduction (the extension
of the proof state with new facts). CL proofs can even be given an intuitive
and visually appealing presentation as trees of facts, from which the structure
of rule applications can be read off immediately. The simplicity of proofs
means that proof objects are always readily available, in stark contrast to
the proofs by resolution.

Another consequence of the completeness of positive deduction is that
CL proofs are constructive. That is, any consequence of a CL theory can be
derived from it using only intuitionistic logic.

1.2 A powerful intuitionistic fragment

In logic one is often interested in classes of formulas for which classical and
intuitionistic provability coincide. One such class is that of Harrop formulas;
another is the image of Glivenko-Godel double-negation translation. Both
of these classes are quite restrictive and very syntactical in nature. At the



same time, an implication with a finite number of coherent antecedents can
be interpreted as a consequence relation inside a topos, as we will discuss
below.

The interest in constructive proofs often comes from working in a proof
assistant whose underlying logic is constructive. Completeness of CL shows
that if, within such a system, one is able to derive a coherent theory, then
one can get any formula implied by this theory with little effort. In fact, this
procedure allows for a straightforward automatization, which, together with
the translation of general FOL theories into CL theories, gives an all-purpose
first-order tactic for interactive theorem provers.

However, the translation itself is not constructive (obviously it cannot be,
since not all proofs are intuitionistic). Proving FOL problems via coherent
logic therefore gives us an unusual factorization of an arbirary first-order
proof into a non-constructive part (the CL translation), and a constructive
part (the CL proof). From this vantage point, CL can be seen as a method
of filtering constructive content from general proofs.

1.3 A notation for sequent proofs

Coherent logic has a single rule of inference. Nevertheless, using this rule
one can represent reasoning in full FOL. A possible view of CL, then, is that
it combines the four rules of the complete tableau calculus into one, giving a
uniform treatment of all logical phenomena in one fell swoop.

While the relationship between coherent logic and analytic tableau is the
most intimate one, it can be extended to nearly the whole of sequent calculus.
The left-sided rules (basically, the tableau rules) are represented immediately,
because the primary derivation rule of CL is essentially a generic elimination
rule.

Our final translation algorith will also suggest how introduction rules can
be represented. As a result, the inference process can be made even more pos-
itive, in the sense of not being necessarily refutation-based. However, there’s
one gap: we cannot faithfully represent the right sequent rule for implication.
The discharge mechanism of CL does not suffice to internally represent dis-
charging of assumptions in the implication introduction. A similar problem
occurs for the universal quantifier, but there it can be circumvented by a
trick which is dual to Skolemization. Still, it is possible that a satisfactory
treatment of introduction rules can be given based on a semantic forcing



relation for CL, as defined in (Coquand [2003)]).

1.4 An automated prover for interactive proof
assistants

A central application of coherent logic is in proof assistants used for formal-
izing mathematics. Formalizing a non-trivial result in such provers usually
requires a large amount of effort, most of which is spent on technical detail
too trivial to be included in published proofs. It is perhaps the fundamental
problem in formalization technology today — that explaining trivial things
to an interactive prover is a non-trivial task.

The situation could be much improved if the full power of automated
theorem proving was available to a user of one of these systems. Unfortu-
nately, the best automated theorem provers today are based on the resolution
method, and the notion of proofs in this framework is too weak for prover
output to be acceptable as a valid proof in interactive systems like Coq or Is-
abelle, most of which are based on type theory. (Although, resolution provers
can be useful as relevance filters; Isabelle’s sledgehammer tactic uses them
to assist proof search of an internal tableau prover.) In particular, the clause
normal form (CNF) transformation converts the input formula into a form
which is no longer logically equivalent with the original. As a result, it is not
possible to recover a lambda term whose type is the original problem from
the proof trace of a resolution prover.

The fatal problem comes from Skolemization, an essential step during
CNF transformation. When a formula such as Vo (P(x) — Jy.P(y)) is con-
verted into Va.(P(x) — P(a)), it loses the property of being a tautology.
And even if one succeeds at refuting the Skolemized formula, one needs to
assume choice axioms in order to lift this proof to a proof of the original
formula. Such axioms are inherently non-constructive, and may even be in-
consistent with the larger proof context one is working in. (Bezem et al.
[2000], de Nivelle [2003])

In contrast, CL does not need Skolemization. The presence of existen-
tial quantifiers renders it unnecessary. Proof objects can be recovered from
traces of CL proofs with virtually no effort. Finally, even if, for efficiency
reasons, one chooses to introduce Skolem functions into the input, they can
be eliminated from the proof at no cost in complerity. This indicates that
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the common view that eliminating Skolem functions must necessarily yield
exponentially longer proofs is not entirely accurate.

1.5 A first-order projection of geometric logic

CL has its origins in topos theory. The logic of toposes is commonly called
geometric logic, because the internal logic of any topos is intimately connected
with the geometry of its underlying sheaf.

Equivalently, geometric logic can be described as the language consisting
of clauses of the form

A1/\---/\An—>\/Ba71/\---/\Ba,ma
«

Note that now the disjunction is infinitary, and may be taken over an ar-
bitrary set of indices . One can motivate this definition by the following
stipulation. Suppose A;, B, ; are elements of a subbasis of a topological space.
Then the left side of the implication denotes some basic set, while the right
side denotes some open set. Hence, a geometric formula is the statement of
inclusion of a basic set into an open set, while a geometric theory expresses
inclusion relations between general open sets. That is, it defines a topology.
The “points” of this formal space are precisely the models of the theory.
Geometric logic is inherently constructive, but what gives it foundational
significance is that it can characterize all of constructive logic. This can be
seen by considering the nature of the semantics of intuitionistic logic. In
classical logic, the collection of propositions ordered by logical entailment
has the structure of a Boolean algebra — the Lindenbaum—Tarski algebra
of propositional logic. Going over to first-order logic, we are thus lead to
interpret predicates as arbitrary subsets of the domain, i.e. by elements of
the domain’s powerset algebra, which is a complete Boolean algebra. In
intuitionistic logic however, the Lindenbaum-Tarski algebra induced by the
syntax is a Heyting algebra — whose completion is a frame. Hence predicates
should be interpreted not by arbitrary subsets, but by a collection of subsets
which form a topology. The operations of frames (finite meets and arbitrary
joins) are fully represented by the format of geometric formulas. Indeed,
geometric logic is exactly the language required to give a description of an
arbitrary frame. For a more detailed discussion, consult Mulvey [2003].
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An important program currently underway aims to use geometric logic to
give constructive interpretations of central theorems of classical mathematics.
For references, see Spitters, Coquand, Mulvey.

1.6 A Turing-complete programming language

Since CL is constructive, it automatically inherits the Curry-Howard iso-
morphism between proofs and programs from type theory. That is, any CL
proof can be readily seen as a lambda term inhabiting the type of the for-
mula proved. Explicitly, the correspondence has the following form. If 7T is
a coherent theory, I' = {A;,..., A,} is a set of facts, and Goal is an atomic
formula, then I' =7+ Goal in coherent logic if and only if the context of
assumptions from 7T yields an inhabitant of type A; — --- — A,, — Goal.

Fisher and Bezem [2007] showed that one can go further — that one can
view CL itself as a model of computation. Specifically, they introduced op-
erational semantics for coherent “programs”. This semantics takes the form
of Skolem machines, idealized devices implementing basic forward search.
Their computational power is equivalent to that of Turing machines — a
fact which is ultimately responsible both for the undecidability and the great
expressive power of coherent logic (equal to full FOL).

That CL has intrinsic computational content canonically related to its
proof theory is yet another illustration of its conceptual elegance.

Before we proceed, a word of caution. In Part I of this thesis, footnotes
will almost exclusively be used to revive the definition of a term or concept
introduced earlier. The reader is hereby advised to stay clear of footnotes
when they appear in a sentence whose meaning is clear.!

'In this manner we attempt to restore the original function of the footnote as an
expository device, which draws its usefulness from knowing that the reader will not follow
it unless she is in want of additional comments or clarifications. This enterprise proceeds
by repeatedly reminding the reader that the utility of reading a footnote could well be
void, a fact presently demonstrated by reflection.
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Chapter 2

The Forward Search and the
Basic Translation from FOL

In this chapter we discuss the basic proof search of CL. After giving a def-
inition of coherent provability, we present the first version of translation of
general FOL formulas into the coherent fragment. Together, this yields a
semi-complete decision procedure for FOL. Refutation-completeness is moti-
vated by close correspondence with the tableau method?. The proof of the
latter will serve to prepare the reader for the optimized versions of translation
to appear later, since the correspondence with tableau calculi forms the basis
for proving completeness of those translations as well. We give examples as
we work through the chapter.

2.1 Ground forward reasoning

The definition of provability for coherent logic is particularly simple in the
case of ground reasoning. Here one restricts attention to closed formulas and
views coherent clauses as schema for deriving new facts by instantiating free
variables by ground terms.

Notation. In what follows, FV(y¢) will denote the set of variables free in a
formula . We say that ¢ is ground if FV(p) = (J; if ¢ is ground and atomic,
then ¢ is a fact. Facts will usually be denoted by upper-case latin letters
(A, B,C...), while greek letters (¢, 1, x...) will stand for general FOL formu-
las. The letters o and 7 denote substitutions — finite maps from variables to
terms. In this chapter, we’ll only be looking at ground substitutions, which

13



map variables to closed terms. We write ¢ for the result of substituting
each free occurrence of a variable z in ¢ with o(x).

Definition 1. Let I" be a set of facts, T a coherent theory, ¢ a fact. The
relation I' 7 ¢ is defined by induction:

Base case ' —r pif peT.

Induction Let L = (A A; — \/ B;) be a clause in T,
and ¢ : FV(L) — dom(T") a substitution with {A7} < T'.
If for each B = 35.C1 A --- A Cy,, T U{CY} =7 @, then T =7 .

The above definition has two additional pieces of notation which we in-
troduce now. For a set of formulas T', the notation dom(T") refers to the set of
ground terms over constant and function symbols in I', which we choose to
call the domain of T. In the literature, dom(T") is often called the Herbrand
universe of I'. Tt is defined inductively by:

e cedom(T) if ¢ is a constant symbol occurring in 7 or in T'. If no such
symbols exist, it is allowed to take for ¢ the particular symbol o.!

o f(t1,...,t,) edom(l) if ty,...,t, € dom(I') and f is a function symbol
occurring in 7 or in I.

The ground forward search we defined above involves dynamically ex-
tending the domain with new witnesses. If ¢ is a formula, then by © we
denote the formula obtained by replacing every free variable x in ¢ by a
fresh constant c,. (In this context, “fresh” means that ¢, should not occur
in either I' or 7. So in the definition above, C? denotes the set of formulas
{C;} in which the universally quantified variables & have been replaced by
o(Z), and the existentially quantified variables ¢ have been replaced by new
constant symbols. This set is then added to I' for the inductive inference.

Example 2. Let 7 be the following theory.

E — 3y.(Q(y) » D(y)) (1)
T = D(z) — Goal v (P(x) A E) (2)
P(z) A Q(z) — Goal (3)

Then {D(a)} 7 Goal. One possible derivation is the following:

IThis is done to prevent pathologies relating to empty domains.
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D(a),---,P(cy), Goal =1 Goal
D(a), -+ ,D(cy),Goal =17 Goal — D(a),--- ,D(cy), P(cy) =7 Goal 3
D(a)’P(a) (Cy)aD(C ) 1 Goal ) 2
D(a),Goal 7 Goal ( ), P(a), E 7 Goal 5
D(a) 7 Goal

The numbers to the right of the inference lines indicate which clause
from 7 has been used in the corresponding inductive inference. Notice the
different substitutions that were used in the two applications of clause (2).

We have given the full derivation above to illustrate the effects of Defini-
tion 1. For the purposes of concise presentation, this sequent-style format is
much too bulky. We shall now introduce a leaner notation.

Since the formula on the right side of “+” never changes while the sets
on the left increase upwards from the root, the structure of the derivation
in Example 2 is completely determined by which formulas are added into
the context — the set of facts known at a particular branch — by each
application of a rule? in 7. Hence the tree above can be represented in the
following manner:

{D(a)} 5" {Goal}

“/x {P(a), B} i1 {Q(cy), D(c >} gl " (Goal)
FF{P(e,)} 5" {Goal}

Here the turnstile symbol is overloaded to mean that the formulas immedi-
ately to the right are obtained from all of the preceding facts by an application
of the clause in the subscript under the substitution in the superscript.
This notation, while being easier to read, also stresses a different aspect
of Definition 1. On the literal reading, the definition seems to describe an
inverse (or megative) inference process: the inductive step states which hy-
potheses are needed in order to derive the conclusion rather than listing the
consequences of the facts that we have. Hence the structure of the sequent-
like tree above, with the facts data increasing as we go backwards from the
last inference. The shorter notation suggests an alternative view of coherent
provability: the clauses are rules stating which facts we may conclude from
what we have now, with several possibilities in the presence of disjunctions.

2The word “rule” ambiguously refers either to a clause in 7 or to a closed instance of
a clause in T.
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This positive view more directly reflects the proof search performed by the
current implementation algorithms. (Although CL provers based on the in-
verse method are also possible.) At the end of this chapter, we give a brief
survey of these.

2.2 The role played by negation

In general, either of the two sides of a coherent clause may be empty. This
is reflected by the cases m = 0 and n = 0 in the general form

A A AAy > Biv--v B, (2.1)

of a coherent clause. As a notational matter, we will write T on the left
side when m = 0, and we write | on the right when n = 0. Let us now
observe the effect of having a clause of the form A A; — L in the context of
Definition 1.

Supposing that we find ourselves in the inductive case with a substitution
o under which the A;s become members of I', we see that the condition on
the B;s is immediately satisfied (vacuously), and hence that I' - .

So whenever we can satisfy the left side of a clause whose right side is
empty, then we can conclude the formula ¢, regardless of what it is. This is
the ex falso rule, stating that anything follows from absurdity, and being an
important element of CL provability.

Dually, when the left side of (2.1) is empty, the hypotheses of the clause
are always satisfied, and the conclusion can be applied under any substitu-
tion. That is, the facts on the right side can always be added into the context
I (possibly introducing new branches). This allows us to add axioms (initial
facts) to the theory 7 we simply add the clause T — A for each fact A that
we want to be available as an axiom in every 7-derivation. Hence the clauses
of a coherent theory serve both as the specification of initial data and as the
rules for deriving new facts from old.

The clause T — L is a contradictory clause: it exposes the fact that the
theory 7 is a priori inconsistent. Similarly to its role in resolution, where a
derivation of the empty clause signals the end of the refutation process, this
clause sometimes appears when a function simplifying the translation for a
CL prover can already detect that the input was unsatisfiable. Invocation of
the prover is thus rendered unnecessary.
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Going back to L, we note that subsumption of the ex falso rule by Def-
inition 1 gives CL an adequate mechanism of negation, just as this rule
implements negation in Gentzen’s Natural Deduction. As an axiom, the fact
—A can be represented by the clause A — L. But in order to reason about
negated facts, it is necessary to introduce for every such A a new symbol A
that will stand for —=A. The coherent theory should then be augmented with
the “bottoming out” clauses that have the form

A(T) A A(Z) - L (2.2)

This rule says that whenever we concluded both A(f) and its negation, we
may finish the proof of the current branch. Using tableau terminology, we
say that the branch is closed. Our notation suggests that (2.2) can end the
proof by a “derivation” of 1. We will adopt this interpretation, and will
often talk about deriving |, leaving the actual meaning implicit.

The canonical translation of FOL formulas into CL formulas which we
will describe in the next section involves introduction of auxiliary predi-
cates for every subformula of the input. The question arises of how to treat
negated subformulas: whether we should keep all negations in place and have
both positive and negative polarities for introduced predicates, or whether
to “push down” all of the negations by repeated applications of DeMorgan’s
laws. In the latter case, we will only need to deal with negations at the
atomic level, making the translation process considerably less complicated.

The same dilemma appears in the theory of tableau systems. Following
Smullyan [1995], many authors consider tableaux consisting of the so-called
signed formulas, where each formula occurring in the tableau comes with a
“sign” stating whether its polarity is positive or negative. As a result, every
logical operator has two corresponding tableau rules — one for each sign of
the formula?. Others prefer to first transform the formula into its negation
normal form (NNF) using DeMorgan’s laws and work with only positive
polarities of the formulas. Each connective then has its own unique tableau
rule.

One drawback of using negation normal forms is that some of the De-
Morgan’s laws are not constructive. The NNF' translation also rewrites non-
basic connectives such as implication in terms of conjunction, disjunction,
and negation — this can also be an issue. Most notably, the transforma-
tion makes use of the double negation elimination rule =——P — P, which is
equivalent to the law of excluded middle. The translation is thus inherently
non-constructive.

17



This does not pose a big problem for us because we are interested in
full first-order logic, and there can be no constructive translation which is
complete for classical tautologies (in the sense of making them provable by
a coherent logic prover). However, it would indeed be desirable to have
a constructive variant that is complete for intuitionistic tautologies. The
existence of such a translation is an interesting open problem.

We will make use of the NNF transformation in all of our translations.
Although the later versions reintroduce polarities in a manner which is related
to signed formulas from tableaux, the occurrences of non-atomic subformulas
will always be made positive with respect to the whole formula. So the first
step of our translation from first-order logic to coherent logic is to take the
negation normal form of the input formula.

Definition 3. Let P be a FOL formula. The Negation Normal Form of
P, written NNF(P), is the (unique) normal form of P under the following
rewrite rules:

(=) — (—p v 1)
(pev) — (=) AR — )

e ¥
~Ayi — V —pi
Ve — A2

—dry — Vi—p
—Vip — i lts)

The formula NNF(P) is equivalent to P, but only has negations in front
of atomic subformulas. It looks like a tree of A and v, occasional V and 3,
and leaves which are literals — possibly negated atomic formulas.

2.3 The first translation

The basic idea for a translation from FOL to CL was proposed by Bezem and
Coquand [2005]. It consists of introducing a new atomic predicate for every
subformula of the input, and adding a clause stating the precise relationship
between the subformula and its immediate children. Because the format of
CL contains every logical connective, we are able to generate such clauses for
every subformula. Essentially this amounts to a simulation of the tableau
method within the CL framework. The CL theory produced by the translator
encodes a “map” of an analytic tableau for the given formula, and a refutation
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of the formula by a tableau system corresponds to a derivation of L from the
theory by a CL prover. This illustrates for the first time the close connection
between ground tableau and coherent provability.

We now define the canonical translation from FOL to CL.

Definition 4. Let ® be a first-order formula in negation normal form.
e For an atomic predicate A occurring in @, let

— T4, Fy be fresh predicate symbols of the same arity as A,
— C'4 be the coherent clause T4 (Z) A Fa(Z) — L.

e For a literal® L < ®, define the atomic formula

e For a compound (non-literal) subformula ¢ < @, let

— T, be a fresh predicate of arity |[FV(p)],
— ¢' be the formula T,,(Z), where Z = FV(y),
— C, be the coherent clause defined according to the top connective

in ¢ (with implicit universal quantification over all free variables

that occur in it):

¥ Co
O1L A APy Spt_,gptl/\.../\@%
OV -V oy gpt—motlv---vgofl
Fyip " — Y’
Vi ot — !

3Recall that L is a literal if it is either an atomic formula or a negation of such.
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e The canonical coherent theory of ® is the set

Te = {CalAd e @} U {Chlp € @} L {T - Ta}

Definition 5. Let I' be a first-order theory. The canonical translation of T’
is

Tr = U TNNF(p)

pel’

Example 6. Suppose we wish to translate into coherent logic the negation
of the formula

¢ = (Vay.Ax v By) — (Vx.Ax) v (Vy.By)
The first step is to compute the negation normal form of —¢:
NNF(—¢) = (Vzy.Az v By) A (Jz.—Ax A Jy.—By)

Now the new predicates Ty, for every ¢» € NNF(—¢) are introduced:

T(V:ry.A:rvBy)/\(Eim.ﬁAm/\Eiy.ﬁBy)7 Tny.Avaya TEJ:.—'AJJAEy.—uBya TAJ:\/By (IL‘, y)7 TEJ:.—uAam
Tﬂy.—'Bya TA(I’), FA(:E)7 TB(:E)7 FB($)
Finally, one constructs the clauses as per Definition 4:

(T

- T(V:vy.A:vay) A(Fz.— Az AJy.—By)
T(me.Am v By)A(3z.—Ax Ady.—By) Tme.Am vBy N Tfim.ﬁAm Ady.—By
TV:vy.A:vay TA:vay (SL’, y)

Ta(z) v Tp(y)
Tﬂx.—'Ax N Tﬂy.—'By

TA:rvBy(xu y)
724,0 = 9 TEJ:.—'AJJAEy.—uBy

R

15z - A0 dx.Fa(x)
Tgy__.By ElyFB (y)
Ta(v) A Fa(v) 1

| TB(v) A F(v) 1

The reader may have noticed that ¢ is a first-order tautology. Thus
— is unsatisfiable, and we should hope that its translation would reflect
this property. Indeed, using the rules of coherent logic (Definition 1), it is
possible to derive L from the theory 7-,, without any extra axioms. One
possible derivation is shown in Figure 2.1.

In this figure, dom is the domain restriction predicate asserted for every
new term added to the proof search, and skq is the Skolem constant intro-
duced when firing the § rule at step 5. Recall that although | is not an atom,
the ex falso mechanism allows us to treat it as such — hence the predicate
symbol false. Similarly, true denotes the empty state T.
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tAndl 1
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tAnd3 3
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D gt o e 1

false 12 Hfalses 14!

Figure 2.1: Example 6
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Does the canonical translation always preserve satisfiability of input for-
mulas? Of course it does! That was our principal motivation for investigating
CL in the first place — to make it possible to prove a FOL formula ¢ by
deriving | from the translation of —¢. In order to give a formal proof of
this fact we must make an excursion into elementary proof theory of classical
first-order logic and explore more closely the relationship between proofs in
FOL and proofs in CL.

2.4 Sequent calculus and analytic tableaux

This section gives a minimal introduction to Gentzen’s sequent calculus and
the tableau method. This is the system of choice for investigations into the
proof theory of first-order logic (Buss [1998]). It is a fundamental property of
this calculus, given by the celebrated Cut-Elimination Theorem of Gentzen
[1935], which inspired the proof procedure bearing the name of Analytic
Tableau.

Here we give an executive summary of these concepts; a reader seeking
more information should consult Samuel Buss’s Introduction to Proof Theory
cited above.

Definition 7. A sequent has the form I' = A, where I' and A are sets of
first-order formulas.

Definition 8. The Sequent Calculus LK is given by the following set of rules.
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o, ' A '-Ae¢ TEHAW
gp/\w,FI—AA '-Apend
o I'EA T A L L'~ A0 R
eviy,I'-A v PI—A,QOV’(/JV
o(t), T+ A I'H A o) VR
Ve.p,I' = A I'= AV
b),I - A T A ot
p(b) - p(t) .
Jr.p, ' = A ' Az
' Ap o, ' A R
-, ' A - A —p
' A ' A
cp,l"l—AWL TI—A,chR
'-Ae¢ oA )
= A Cut oo Axiom

The term ¢ appearing in the rules VL. and R represents an arbitrary
first-order term. In contrast, the rules VR and L are subject to a provision
named the eigenvariable condition. This is a requirement that the constant
b appearing in the hypotheses of these rules must be fresh — not occurring
in either I' or A.

As before, we write T in place of I' when it is empty and L in place of A
whenever A is empty.

The Cut-Elimination Theorem states that any derivation in LK can be
transformed into a derivation of the same sequent which does not make use
of the Cut rule. This result is the cornerstone of proof theory. It is also the
theoretical basis for the tableau method of automated deduction. The latter
shall presently be illustrated.

Suppose that ¢ is a first-order tautology. Then NNF(—¢) is unsatisfiable,
and thus NNF(—¢) L is a valid sequent. By the completeness theorem,
there exists a derivation having this sequent as the root. Moreover by the
cut-elimination theorem, there exists a derivation of NNF(—¢) + L which
does not make use of the Cut rule.
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Let m be such a derivation. What are the possibilities for the last rule
applied in 77 In fact, the only possibilities are the left-side rules, because
the right side of the root sequent is empty, and all of the rules [-]R introduce
a formula on the right side (for [[] € {A, v,V,3, —, W}), while Cut is not a
rule that occurs in 7.

Furthermore, with the exception of the rule =L, all of the left-sided rules
have the property that the right side of the hypothesis is the same as the
right side of the conclusion. That is, the set A remains empty until we come
to an application of the —L rule.

But because the formula in the root is in negation normal form, —L could
only be applied with an atom as the principal formula — the new formula to
appear on the left side of the hypothesis. Consequently, the only rules which
could appear in 7, in addition to [-JL, are WR and Axiom.

It therefore follows that the proof of NNF(—¢) - L (which does exist if ¢
is a tautology) has an exceedingly simple shape: it is nothing but a tree of ap-
plications of the four logical left introduction rules (FL with [ € {A, v, ¥, 3}),
occasional shifting of negated atoms to the right side, weakenings, and ax-
ioms at the leaves. The suggestion of automating the search for such a tree
now suggests itself automatically.

In the tableau formalism, we focus on the four left logical rules and ab-
stract away from negation and weakening: these are subsumed by Ax* — a
minimal strengthening of the Axiom rule that allows the branch to be closed
whenever A(f) and —A(%) both appear on the left side of the sequent. Using
Ax* in place of Axiom, the leaves now look like I' - L, with A(7), ~A(f) e T.

It therefore becomes unnecessary to talk about sequents, since A is always
empty. It also becomes more convenient to look at the trees upside-down:
with root at the top, and leaves on the bottom. At every node, we have a
set I' consisting of formulas which have been derived so far. The possible
descendents of I' are given by the four logical rules.

The logical rules get new names in the tableau world: the rules AL,
vL, VL, and JL are now respectively known by the names of «, 3,~, and 4.
They are also expanded from being binary to having any finite number of
successors. For example, a chain of JL rules can be represented by a single
0 rule, which strips off all outermost existential quantifiers, replacing the
quantified variables with fresh constants. When we want to emphasize the
difference, we write [[JL* for the chained version of the rule L.

By LK* we shall denote the sequent calculus obtained by using only the
rule Ax* and the four logical rules [IL*. Applying a rule to a formula ¢ € T’
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means that ' is expanded by the formulas occurring in the hypothesis of the
corresponding LK* rule (having ¢ as the principal formula). The following
definition should now be self-explanatory.

Definition 9. Suppose that & is a formula in negation normal form. A
tableau for ® is a finite tree T in which every node is labelled either by a
FOL formula or a set of formulas, and which has the following properties:

e The label of the root is @.

o If o € T is a leaf, then there exists a predicate P and closed terms ¢
such that the atomic formulas P(f) and —P(%) both occur as labels on
the path 0. Leaves sometimes have an extra label L.

e [f 7 is not a leaf, then there is a formula ¢ on the path to o such that
one of the following holds:

(a) @ is a conjunction p1 A -+ A ¢, and the unique successor of o is
labelled by the set of conjuncts {¢;}. In this case, we say that the
rule applied in T at o is the o rule.

(B) ¢ is a disjunction, and the children of o are labelled by each of
the disjuncts. Then we say that the g rule has been applied at o.

(7) ¢ is a universal formula Vz.¢)(z) and the only child of o is labelled
by a closed instance 1 (t) of its matrix. This is the v rule.

(0) ¢ is an existential Jz.¢)(x) and the only child of ¢ is labelled by
a fresh instance 1 (a) of its matrix. Freshness means that a does
not occur on the branch from the root to o (thus a also does not
occur in the formula ®). This is the ¢ rule.

The observations leading to Definition 9 above are usually summarized by
reference to a result known as The Subformula Property. This proposition
states that for cut-free proofs, every formula occurring in a derivation is
a subformula of one of the formulas in the end-sequent (the root of the
derivation).

The subformula property is what put the word analytic into the proper
name Analytic Tableau. It reflects the intuition of the tableau breaking down,
or analysing, the formula according to its syntactic structure. The alternative
name Semantic Tableau stresses the close connection between tableau rules
and the meaning (semantics) of logical connectives. That both names are
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used interchangeably indicates yet again that Gentzen’s sequent calculus is
a natural, complete, syntactic theory of first-order logic.

Finally, we would like to ask the reader to take Definition 9 more as an
informal description rather than a rigorous definition. For us, a tableau will
be just a derivation of the sequent ¢ — 1 in LK* — the variant of LK
consisting of the rules []L* and the rule Ax* — with ¢ a NNF. The trees of
Definition 9 are merely a shorthand notation for such derivations.

Example 10. Let ¢ be the first-order tautology (3z.Px A Qx) v (Yy.Py —
—Qy). To find a proof of ¢ using the tableau method, we must compute the
negation normal form of —¢:

NNF(—¢p) = (Vo.=Pz v =Qz) A (3y.Py A Qy)

Now we repeatedly apply the rules «, 5, v, and 9, starting with the initial
set {NNF(—¢)}, until we can close every branch. This process is depicted
below, where every inference is labelled with the tableau rule that was applied
at the corresponding node.

N (Vz.—Px v —=Qx) A (Jy.Py A Qy)
Vr.—Px v =Qx
3y.Py A Qy
N Pa A Qa
8 —Pa v —Qa
—Pa o —Qa
Pa Pa
Qa Qa
1 1

This tableau directly corresponds to the LK* derivation® of the sequent
NNF(—¢) + L displayed in Figure 2.2, where the principal formula in the
conclusion of each inference is underlined.

4Recall that LK* derivations are just LK derivations in which non-axiom rules are
n-ary and the rule Ax* abbreviates one application of —L, a sequence of zero or more
applications of WL, and one Axiom.
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Ax* Ax*

Ver.—Pz v —=Qz,3y.Py A Qy, Vz.— Pz v —Qz,3y.Py A Qy,

(Vz.—Pz v =Qz) A (Jy.Py A Qy), (Vz.—Px v —=Qz) A (3y.Py A Qy),
Pa A Qa,—Pa v —=Qa, HL Pa A Qa,—Pa v —Qa, HL

—Pa, Pa,Qa —Qa, Pa,Qa
AL — AL
(Vz.—Px v =Qz) A (3y.Py A Qy), (Vz.—Px v =Qz) A (3y.Py A Qy),
Vz.— Pz v =Qz,3y.Py A Qy, L Vz.— Pz v —Qz,3y.Py A Qy, L
Pa A Qa,—Pa v —Qa,—Pa Pa A Qa,—Pa v —Qa, —Qa
vL

Ve.— Pz v =Qzx,3y.Py A Qy,
Pa A Qa,—Pa v —Qa

(Vz.—~Pz v =Qz) A (Jy.Py A Qy),
=L

(Vo.—Pz v =Qz) A (Jy.Py A Qu),
FL

VL
Vr.—Px v —=Qx,3y.Py A Qyu,
Pa A Qa

(Vz.—Px v =Qz) A (3y.Py A Qy), B
Ve.— Pz v —Qz,3y.Py A Qu =

{ (Ve.mPzv -Qz) A Fy-PyrQy) }+ 1L

L

AL

Figure 2.2: An LK* proof of Example 10

2.5 Completeness of CL as a FOL proof pro-
cedure

We are now ready to justify the use of coherent logic to prove first-order
tautologies. Recall Example 6:

¢ = (Vzy.Az v By) — (Vz.Az) v (Vy.By)
Since this is a tautology, its negation must have a refutation. We have
NNF(—p) = (Vxy.Az v By) A (3z.—Azx A Fy.—By),

and the complete tableau for the refutation of NNF(—y) is

(Vzy. Az v By) A (Jxz.—Ax A Jy.—By)
(Vzy.Ax v By), (Jz.—Ax A Jy.—By)
Jr.—Az,y.— By

1 )
—Bb
Aa v Bb
Aa  Bb
1 1

«
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Now compare the tree above with the tree in Figure 2.1 that was pro-
duced from the canonical translation of —¢. That the trees look so similar
is not an accident: each node in the tableau labelled by the subformula (%)
corresponds to a node in the coherent derivation with label T}, (t). More im-
portantly, the correspondence is not just between the nodes of the trees, but
also the rules with which the nodes are derived. In particular, the principal
formula(s) that were used in an application of one of the four tableau rules
always corresponds with an instance of the fact(s) appearing on the left-hand
side of the coherent clause that was used to derive the translated node.

The following proposition is a precise formulation of the statement: “To
every closed tableau of a FOL tautology ¢ there corresponds a unique coher-
ent derivation of L from the canonical coherent theory of NNF(p).”

Theorem 11. Let ¢ be a formula in negation normal form. The set of LK*-
derivations of the sequent ¢ +— L is in bijection with the set of (coherent)
T,-derivations of L from .

Proof. Let T be the canonical translation of ¢. Let 7 be a derivation in LK*
of p - L. For A — L asequent in 7, let A? be the set {T},(7)[¢(f) € A}.
By induction on subderivations £ € 7, we construct a coherent derivation of
Al 7 L, for every A in .

e ¢ is an application of the rule Ax*. Then there is a predicate P and
closed terms f such that P(f), =P (f) € A. By Definition 4, 7 contains
a clause Tp(Z) A Fp(Z) — L, while A? contains the facts Tp(7) and
F p(?). Hence by the induction clause of CL-provability we have that
At 7 L, using (t/) as the substitution.

e ¢ ends in an application of the o rule. Then ¢ = 1 A -+ A @, €
A, and the immediate subderivation of ¢ is a derivation of the se-
quent A, ¢q,---,p, — L. By the inductive hypothesis, we have that
At ot e L But of > ) Ao A @ is a clause in T by
construction. Hence T yields L from A’ by coherent induction.

e The remaining clauses are treated similarly.

It therefore follows that {¢'} 7 L (since this corresponds to the last
sequent in 7.) But 7 contains the clause T — ¢!, and we have by one more
application of CL induction that ¢§ -7 L. This completes the construction
of the coherent derivation corresponding to 7. The inverse transformation is
symmetrical. O
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Corollary 12. Let ¢ be a first-order tautology. Let T = Tunr(—p). Then
L

Theorem 11 presents coherent provability as an integration of the four
rules of the analytic tableau calculus into one — the rule of Definition 1.
Exploiting this fact is the essence of the canonical translation.

The simplicity of this translation makes it very easy to implement it on a
computer. The fact that composing it with a coherent prover yields a general
first-order procedure which is equivalent to analytic tableau makes this idea
especially appealing.

Example 13. Recall the formula ¢ = (Jz.Px A Qz) v (Vy.Py — —Qy).
In Example 10, we computed a proof of ¢ using the tableau method. Now we
will show how the proof can be found automatically by feeding the formula
to a CL prover through the translator. Below is the result of applying a
simple implementation of the basic translation to

NNF(—¢) = (Vz.—Pz v =Qz) A (Jy.Py A Qy)
true => tAnd_47.

tQ(V1), fQ(V1) => false.
tP(V1), fP(V1) => false.

tAnd_47 => tForall_42, tExists_46.
tExists_46 => dom(Y), tAnd_44(Y).
tAnd_44(Y) => tP(Y), tQ(Y).

dom(X), tForall_42 => t0r_40(X).

t0r_40(X) => fP(X); fQX).

Feeding this theory to the GeologUI prover produces the tree shown in
Figure 2.3. It is instructive to compare it with the tableau proof given at the
end of the previous section.

As we see, the translation—prover tandem gives us a method of proving
first-order tautologies. (Of course, it is only a semi-algorithm, because FOL
provability is semidecidable.) The efficacy of the method depends on two
things: the translator and the prover. The translator should be flexible and
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Figure 2.3: Automated proof of Example 10

efficient, and the prover powerful, in order for their combination to be useful.
Developing a high-performance, efficient translation from FOL to CL is the
primary subject of the Part I of this thesis. The present chapter concludes
with a list of provers which are available for coherent logic. They have greatly
assisted us during translator development.
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2.6 The provers

The following provers can all loosely be said to implement Definition 1. All

of them follow the depth-first strategy, possibly with minor extensions.

Prover Author Language | Distinguishing feature
CL Marc Bezem Prolog Simple
GeologUI John Fisher Java Visual
(Co)Colog John Fisher Java Concurrent
Coherent Stefan Berghofer SML [sabelle integration
Geo Hans de Nivelle C High performance
Euclid P. Janici¢, S. Kordi¢ | Prolog First CL prover

We now give a more detailed description of each system.

1. CL — This is a short implementation by Marc Bezem whose main
objective was to serve as a prototype for later implementations. Sur-
prisingly however, its performance is quite good, considering that it
is more or less a direct Prolog implementation of the forward search
described above. It was successfully applied for large proof develop-
ment, as reported by Bezem and Hendriks [2008]. The prover follows
depth-first strategy, and uses Prolog native indexing routines. There
is a backend that generates proof objects for Coq and Isabelle from
the proof trace recorded by the prover. One recently added feature is
a queueing mechanism which prevents the same existential rule from

firing again until other applicable existential rules fire first.

2. GeologUI — This nice implementation by John Fisher features a truly
beautiful graphical user interface to the prover. The user can select
theories by dropping files into the window, execute the proof one step
at a time, backtrack, set various parameters and heuristics, or run the
prover for a fixed number of steps and have the result visually presented
as a tree of facts. The core algorithm is identical with that of Bezem’s
prototype, but also implements the earliest-first fairness restriction,
making the prover refutation-complete. This prover was very useful in
the development of our translator, and we will often use its capabilities
to display proofs. For example, the proof shown in Figure 2.3 was

generated by GeologUI.

3. (co)Colog — CoColog is a command-line version of GeologUI in which
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the core of the algorithm has been parallelized. The experiments with
concurrency are ongoing, but the proof search has exhibited speed-up
factors up to 2.5 on certain problems when executed on a quad-core
machine Fisher [2009].

. Coherent — This prover was written by Stefan Berghofer in the Stan-
dard ML language. The prover is implemented in the environment of
the Isabelle system, an interactive prover based on Higher-Order Logic
(HOL). The code uses datatypes native to Isabelle, and generates proof
objects immediately available to the system. Such extensive integra-
tion between the prover and its environment can be said to accomplish
to a significant extent the primary aim of the ACL project — to have
a native first-order prover for interactive proof development. (The re-
maining part is the translation.)

. Geo — Hans de Nivelle has written a high performance prover based
on coherent logic which competes in CASC — the CADE ATP Sys-
tems Competition. It uses an algorithm which is different from those
above, and relies most heavily on a particular kind of lemma learn-
ing introduced by De Nivelle and Meng [2006]. A peculiar feature of
the preprocessing stage of the prover is the so-called antiskolemization
procedure, that replaces all function symbols, including constants, by
existential formulas. Still, Geo is a depth-first ground forward prover.

. Euclid — This prover was implemented by the Serbian school (Janicic
and Kordic [1995]) before coherent logic was defined in (Bezem and
Coquand [2005]). It was designed to solve problems in elementary
geometry. Later, many problems from geometry would be used as test
examples for other coherent provers. Another idea implemented in
Euclid which anticipates later work is the classification of input clauses
according to whether they have branches, existential quantifiers, or
unrestrained free variables.

32



Chapter 3

Improving the Translation

The purpose of this chapter is to serve as the bridge between the naive
translation introduced in the previous one and the full general translation
developed in the next one. We reflect on the basic algorithm and suggest
a few improvements. Some of these will motivate the core design of the
advanced algorithm.

3.1 Immediate optimizations

Much of our work has been directed at improving the translation from FOL
to CL in order to make it useful for proving FOL formulas using coherent
provers. Soon we will see that this requires fundamental changes to the trans-
lation algorithm. However, we can already discuss some trivial improvements
which have significant impact on performance.

1. The first is strengthening the NNF transformations to not only push
negations down, but also collect the logical connectives together if their
arguments have the same operator, like so:

Input Output
AAN((BAC)AD)| ANBACAD
Av(BAC)vC)|Av (BAC)VvC

Ve (Vy(Vz.p)) Varyz.p
dxy - - dzpe 1Z.p

These rules are completely cosmetic and might be automatically sub-
sumed by a particular representation of the formulas. For example,
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in the Isabelle prover, the two forms of quantified formulas denote
the same objects — with “Input” being the inner representation and
“Output” being the form displayed to the user — while the formula
A A B A C is just a notation for (A A B) A C, for which the needed
transformation is obtained by adding to the rules in Definition 3 the
rule of A-associativity oriented to the left. (The same is done for v.)

However, these rules do have influence on the efficiency of proof search
if one applies Definition 4 verbatim, because if Vx.Vy.p were to give
rise to two clauses instead of one, the proof search would contain more
facts, depleting computing resources quicker, and it would require more
operations of matching/unification.

. The second optimization consists of packing the clauses returned by
the translator as much as possible into the coherent format.

Generally, it is desirable to keep the number of clauses to a minimum,
because every additional clause means more matching operations. For
example, if the translation produces a theory containing the clauses

TP:mv(EIy.P:vyAQy) (:E) - Tp(l‘, (l) 4 Tﬂy-PJ»‘y/\Qy (:E)
TEIy.P:vyAQy(x) - 3y-CZijy/\Qy(xu y)
TPmyAQy(xv y) - TP('I7 y) A TQ (y)

then it is desirable to “reduce” these clauses to

TPmav(Eiy.Pmy/\Qy) (l‘) - TP($’, a’) Vv Hy(TP(xa y) A TQ(y))

which is a valid CL clause. This decreases the number of times a fact
must be looked up in the current state, allowing the prover to construct
the model quicker.

The improvement in performance is particularly striking with regard to
the packing of conjunctions into existential clauses. Whether the last
two clauses in the above example are combined into one could in some
cases make a difference in whether the depth-first search will terminate.
This effect can be alleviated by adding the “backward” clause for the
conjunction Tp(z,y) A To(y) = Trayrgy(z,y), but this solution comes
with a penalty: the number of facts gets much bigger, consequently the
proofs get much longer.
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3. After the translation is finished, the following rewrite rules should be
applied to the resulting theory; it is a form of normalization, which
performs partial proof before the actual prover is invoked. (Removing
redundant clauses and subformulas.)

TAp —
LAy —
Tve —
vy —
dz. T —>
dr.l —>
Ve T —>
Ve.l —
Pi) —
P{) —
QLA APy —
GLV -V oy —

(T—>P@)eT
(P(7%) > L)eT

A A A 46 46

In addition to the rules above, the translator should also discard useless
clauses like T — T or P(f) — P(?).

4. Finally, before invoking the prover, it is important to order the clauses
of a coherent theory in the following manner:

Bottoming-out clauses (with empty right side) come first.

Then come clauses without disjunctions, existentials, or universals
(free variable clauses).

Now disjunctions without existentials and universals.

Now free variables, still without existentials.

Then existentials without disjunctions.

Everything else.
It is possible that the simplifications above give rise to the empty clause
T—->1

The process of refutation is thereby already completed — the theorem was
proved by the translator, so to speak. We usually say in this case that “the
translated theory has been simplified to nothing.”
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Example 14. The drinker’s paradox is the formula
¢ = Jx.(Px — Yy.Py)
In order to obtain the proof of this formula using coherent logic, we compute
NNF(—¢) = Va.(Pz A 3y.—Py)

The canonical translation of this formula is

) T

—_

TVm.(PJ:/\Ey.—uPy)
TPx/\Hy.—uPy ($)
Tp(z) A Ty -py
Jy.Fp(y)

L

(

(2)  T¥a.(Pzaay.—Py)
TanF(—p) = 3 (B)  Tryaay.—py()

(4) Tay.—py

(5) Tp(x) A Fp(y)

Ll

Denoting by v~ one or more applications of the simplification rules above,
we get the sequence of conversions in Figure 3.1.
As can be seen from the figure, the drinker’s paradox simplifies to nothing.

Generally, it is best to leave the inference process to the prover, which is
designed to carry it out as efficiently as possible. However, the simplifica-
tions suggested above significantly reduce the complexity of the translated
theories. The results they produce are both more elegant and more efficient.
So performing these transformations is a good investment of the prover time.

From now on, the examples we give will implicitly apply all of the im-
provements above to the result of Definition 4.

3.2 Shortcomings of the naive translation

While the basic translation presented in the previous chapter is all nice and
good for theoretical work, it is unfortunately of minimal practical utility.
Applying the translation to simple formulas often results in coherent theories
which cannot be refuted by a prover.

What is worse, applying the translation to theories which are already in
coherent form (and easily refuted) can too produce unfeasible translations
by making the theories far more complex. This is clear evidence that the
translation is falling far short of having an “optimal” behavior one would
wish for.
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Figure 3.1: Simplification of the Drinker’s Paradox

Example 15. Consider the proposition that the diamond property (DP) is
preserved under reflexive closure of a rewriting system. It can be formalized
in coherent logic by the following theory DPE:

% start and finish

true => dom(a), dom(b), dom(c).
true => re(a,b), re(a,c).
re(b,X), re(c,X) => goal.

% equality axioms
dom(X) => e(X,X).
e(X,Y) => e(Y,X).
e(X,Y), re(¥,Z) => re(X,Z).

% basic facts on re
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e(X,Y) => re(X,Y).
r(X,Y) => re(X,Y).
re(X,Y) => e(X,Y); r(X,Y).

% DP
rX,Y), r(X,Z) => dom(U), r(Y,U), r(zZ,U).

Here the predicates r, re, and e respectively represent the rewrite rela-
tion, its reflexive closure, and equality. It is easy to see that DPE  goal:
running a naive implementation of the ground forward search yields a proof
of goal in 35 steps, as shown in Figure 3.2 produced by GeologUI.

38



tru= B

domlu] 1

| Click on tree node to vi

domlcl =

tRE(m, bl 4
tRElm,c] &
tElm,ml &
tRE(m,m] T
tElb, b1 =
tRE(E, b1 5
tELc, <] 16
tRE(:, <) 11

s

tEim BI712 tRim, b1 17

tE(k, ml 13 tE[u]cf{ :ETE o) .23

tRE(b,ml 14 +tElc,m]l 153 dom[sl_ﬂ] 24
tHE[J,c] 15 tREl:,ml 28 tﬂ[b,sk_ﬂ] 25

ful== 15 tREL:, Bl 21 tH[b.sk_ﬂ] 25

false 22 tRE(b,=k_8) 27
tE(=k_ 0, =k 81 28
tHEisk_J\.sk_El] 23

domi=k_ 11 20
tRib, =k_11 21
tRlc, =k 11 22
tRE(h, =k_11 32
tRE(c, =k 1) 24

39 iFuLse 25

Figure 3.2: DPE



However, applying the canonical translation to the conjunction of the for-
mulas in the theory above yields a set of clauses that is far more complicated:

tR(V1,V2) ,fR(V1,V2) => false.
tE(V1,V2) ,fE(V1,V2) => false.
tRE(V1,V2) ,fRE(V1,V2) => false.

tGOAL , fGOAL => false.

true => dom(a), dom(b), dom(c).

true => tAnd_23.

tAnd_23 => fGOAL, tRE(a,b), tRE(a,c), tAll_7,
tA11_8, tAl11_10, tAl11_12, tAl1l_14, tAll_16, tAll_18, tAll_22.

dom(X), tA11l_7 => t0r_6(X).

t0r_6(X) => fRE(b,X); fRE(c,X); tGOAL.

dom(X), tAll1l_8 => tE(X,X).

dom(X), dom(Y), tAl11_10 => t0r_9(Y,X).

t0r_9(Y,X) => fE(X,Y); tE(Y,X).

dom(X), dom(Y), dom(Z), tAl1l_12 => t0r_11(Y,X,Z).

t0r_11(Y,X,Z) => fE(X,Y); fRE(Y,Z); tRE(X,Z).

dom(X), dom(Y), tAll_14 => t0r_13(X,Y).

t0r_13(X,Y) => fE(X,Y); tREIX,Y).

dom(X), dom(Y), tAll_16 => t0r_15(X,Y).

t0r_15(X,Y) => fR(X,Y); tRE(X,Y).

dom(X), dom(Y), tA11_18 => t0r_17(X,Y).

t0r_17(X,Y) => fRE(X,Y); tE(X,Y); tR(X,Y).

dom(X), dom(Y), dom(Z), tAl11l_22 => t0r_21(X,Y,Z).

t0r_21(X,Y,Z) => fR(X,Y); fR(X,Z); tEx_20(Y,Z).

tEx_20(Y,Z) => dom(U), tAnd_19(Y,Z,U).

tAnd_19(Y,Z,0) => tR(Y,U), tR(Z,0).

Let’s analyze the above example further. The output displayed is from
the most direct implementation of Definition 4. When we also make use
of the simplifications suggested in the previous section, we end up with a
considerably leaner theory:

tR(V1,V2) ,fR(V1,V2) => false.

tE(V1,V2) ,fE(V1,V2) => false.
tRE(V1,V2),fRE(V1,V2) => false.

true => dom(a), dom(b), dom(c).

true => tRE(a,b), tRE(a,c).
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dom (X) => fRE(b,X); fRE(c,X).

dom(X) => tE(X,X).

dom(X), dom(Y) => fE(X,Y); tE(Y,X).

dom(X), dom(Y), dom(Z) => fE(X,Y); fRE(Y,Z); tRE(X,Z).
dom(X), dom(Y) => fE(X,Y); tRE(X,Y).

dom(X), dom(Y) => fR(X,Y); tRE(X,Y).

dom(X), dom(Y) => fRE(X,Y); tEX,Y); tR(X,Y).
dom(X), dom(Y), dom(Z) => fR(X,Y); fR(X,Z);

dom(U), tR(Y,U), tR(Z,U).

Still, when we invoke CL to refute the above set of clauses, the prover
chokes itself — it generates so many facts and witnesses that the proof
progress slows down to the point where there is no longer any hope it could
finish the search within a reasonable amount of time.

Running the Prolog profiler on the prover while it is trying to refute the
theory without simplifications shows that most of its time is spent in the
t0r_11 predicate. Inspecting the theory, we find that it occurs in the clauses

dom(X), dom(Y), dom(Z), tAll_12 => t0r_11(Y,X,Z).
t0r_11(Y,X,Z) => fE(X,Y); fRE(Y,Z); tRE(X,Z).

In the simplified theory, these clauses are reduced to
dom(X), dom(Y), dom(Z) => fE(X,Y); fRE(Y,Z); tRE(X,Z).

Could this clause be responsible for the terrible behavior of the prover?

Let’s inspect it closer. On the right side, we have a triple disjunction,
and it contains three free variables. However, the left side has no atoms
or predicates introduced by the translator. Hence the only hypotheses on
the left side are the domain restriction predicates, leaving the free variables
essentially unguarded. Thus the clause above is able to fire for any ground
substitution of the variables (X,Y,Z). (Notice that this is not a result of the
simplification, because the fact tA11_12 that appears to be “guarding” the
clauses in the earlier version has no variables either and is actually asserted
right after the “top” rule is fired.)

So for every sequence of three elements of the domain available at the
current branch, the clause gives rise to three new branches. In turn, any of
these which does not immediately yield a refutation will eventually arrive at
the clause for the next sequence, and so on. We therefore have a tower of
exponentials, of height 3% No wonder the prover chokes on the problem.
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Looking at the original theory, we see that the clause above corresponds
to the input subformula

e(X,Y),re(Y,Z) => re(X,Z).

which has neither disjunctions nor unrestrained free variables. It is putting
all of its predicates on the right side which introduces the new branches.
Simultaneously, removing predicates guarding free variables from the left
exacerbates the situation exponentially. The verdict is clear: movement of
atoms into positive position has disastrous consequences for proof search.

One could blame NNF transformation for the replacement of implication
with disjunction, but that would be a fig’s leaf, because a good translator
should try to find the best equivalent theory anyway. In particular, if the
input contained disjunction, it should be translated into a theory which uses
implication instead.

Nor should we try to use the particular syntactic structure of the input
to help decide its possible translations. In fact, the optimal behavior of the
translator should be due to its inner design logic rather than ad hoc checks
such as “is this formula already coherent?”

At the same time, it is clear that moving those atoms from left to right
was a bad idea. We should not have done it. So let’s move them back.

In fact, this is exactly what we will do. But before we discuss the proce-
dure in detail, let’s pause and ask ourselves: what makes a good translator?

3.3 Ciriteria for a good translation

It is hardly possible to state precisely what a universally “good” translation
will do. Therefore, we propose the following list of not-so-precise — but
more useful — translator benchmarks. They should be read as intuitive
aims rather than formal specifications.

1. Optimality — this property is simultaneously most decidedly desirable
and least plausibly definable. (Of course, we could say that a translator
is optimal if it generates theories running in the least number of steps
on some benchmark prover. But then such a translator should output
T — T if the theory is true and T — 1 otherwise. Alas, first-order logic
is undecidable.) One possible notion is that a translation is optimal if,
among the possible translations it can return, it returns the one that
would be most favored by a human.
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8.

Utilize the CL format to the maximum extent possible. The translation
should try to fit the general FOL formula into coherent clauses as far as
this is possible. Of course, this again cannot be given a precise sense,
but two examples are: packing and existential anchoring.

Easy proof objects. The translation should not make use of any opera-
tions which are difficult to justify on the level of proof objects (such as
Skolemization). Also, the proof objects should not exhibit superlinear
blow-up as a result of reversing the translation steps.

The translated theory should not deviate too much from the logical
structure of the input. In particular, if the prover finds a counter-
model, the user should be able to comprehend it as a counter-example
to his input formula. Why we satisfy this: because the introduced
predicates in all cases correspond to a subformula of the input, or its

NNF

Flexibility. The translator should be able to create many theories with
different structure. The theories should create theories with very dif-
ferent prover behavior. Should have many different effects on proof
search.

Idempotent. Applying translator to a translated theory should not
make it more complicated or introduce any non-cosmetic changes.

Highly customizable, it should be easy to change behavior by a small
change in a parameter. We want a translator which can be much better
used to navigate the (hopefully) large space of possible translations.

Does not make coherent theories worse.

There is tension between some of the items above, especially 4 and 5.
The solution is to rely on as few principles as possible, and maintain the
close connection between the syntax of the FOL formula and the resulting
coherent theory.

3.4 Improved translation

In this section we fully develop the mechanics of moving atoms back to the
left. Although this idea is very simple, it has a very good effect on the trans-
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lated theories, enough to earn it the status of the first major improvement to
the translator. It also serves as the stepping stone to the general translation
that is the subject of the next chapter.

Let’s recall the setup from section 3.2. Suppose we are given a formula

Vay.P(z,y) — Q(z,y) (3.1)
where P is an atomic predicate. Its canonical translation is

Although (3.1) is already a coherent formula and has no disjunctions, its
translation (3.2) splits the proof search whenever it is applied. What’s worse,
clause (3.2) has what we call unguarded doms' — free variables which only
occur on the right side of the clause.

Both problems would be fixed by allowing P to be moved to the left.

The naive strategy could run as follows. Given a FOL formula ¢, compute
its canonical translation. For every clause which has a disjunct consisting of
a single literal T4 (respectively Fl4), remove this disjunct and add a conjunct
on the left side of the clause with the opposite polarity Fx (respectively T)4).

However, it is not possible to blindly move all atomic predicates to the
left. In the absense of compensatory clauses, this might cost us completeness.
For an example, consider the tautology

(Fxyz.(Pryz v Q) A (—Pzyz v Q)) = Q (3.3)

The canonical translation of its negation is

T - TEImyz.(P:vyQO)/\(ﬁPmyQO) A FQ
TEI:vyz.(PmyQO)/\(ﬁP:vyQO) - nyz'TPmyQO(xa Y, Z) N TﬁPmyQO(xa Y, Z)
TP:vyQO(xayaz) —>Tp(3:,y,z) vV TQ

TﬁPmyQO(xayvz) - Fp(x,y,z) vV TQ

TP(ZL‘,y,Z)/\FP(I‘,y,Z) — 1

TQ AN FQ — 1

Running this theory with Geolog yields contradiction in 10 steps, as shown
in Figure 3.3. However, if the disjunctive clauses are replaced by

!dom(x) is the range restriction predicate in Bezem’s Prolog prover — it specifies which
elements belong to the domain in the current search state.
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Figure 3.3: Translation and refutation of (3.3)

TnyQO(xayaz) A FP(xvyv Z) A FQ -1
TﬁnyQO(xayaz) A TP(xvyv Z) A FQ -1

then we will not be able to derive | with ground forward search. Neither
of these two clauses can fire, because the theory has no clauses which could
add facts with atoms Tp or Fp to the context. The countermodel produced
by the proof search would interpret both Fp(@) and Tr(@) as false, which is
not the intention of the translator.

The completeness can be restored by adding the clause

T — Tp($,y,z) \% Fp(l’,y,Z)

which is dual to the “bottoming out” clause appearing in the usual trans-
lation. Unfortunately, such clauses are extremely dangerous, because they
have no atoms on the left side, all of the free variables are unguarded, and
their number depends on the arity of the predicate. The presence of such
a clause thus immediately gives rise to the situation of equation (3.2), with
exponential explosion of branching. As our current goal is to avoid such situ-
ations, we cannot accept a solution requiring these clauses. We are forced to
conclude that when atoms are moved to the left side, any atoms appearing
in the opposite polarity must stay in place, since they may be required to
make the new (contrapositive) clause fire.
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To summarize, for any predicate symbol occurring in a formula, there is at
most one polarity with which literals containing the predicate may be moved
to the left in the formula’s translation.

The improved translation algorithm runs as follows. Given a formula ¢,
it picks a polarity for every predicate symbol occurring in ¢, computes the
canonical translation of ¢, and moves to the left all literal disjuncts of the
appropriate polarity. We arrive at the following definition.

Definition 16. The improved translation gives for each formula ¢ in NNF
a set of coherent theories {7,} indexed by maps p : A — {T, F'}, where A is
the set of atomic predicates occurring in . For each such p, we define the
theory 7, as follows.

Let 7y = 7T, be the basic translation of ¢. For a literal L < NNF(¢p), recall
that L' is the formula T4(f) when L = A(f), and F4(f) when L = —A(7).
Accordingly, define

{AC A NLL= V5, Di|(ACi >V Dj) € To, 1, = Dy L€

The translation thus defined is easily automated. In the following exam-
ples, we use an implementation written in Common Lisp.

Example 17. Let’s find the translation of the example we used in the dis-
cussion above.

(Azyz.(Pryz v Q) A (—Pzyz v Q)) — Q

Our implementation of the canonical translation algorithm yields the theory
To displayed below. (Compare with the listing two pages back.)

true => tOr1(X,Y,Z), t0r2(X,Y,Z), £Q.
t0r1(X,Y,z) => tP(X,Y,Z); tQ.
t0r2(X,Y,Z) => fP(X,Y,Z); tQ.
tP(X,Y,Z2), fP(X,Y,Z) => false.

tQ, £fQ => false.
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The set of possible assignments of polarities to predicate symbols is

{(P,T), (@, 1)} (P T), (Q, )} AP, F), (Q T)EA(R, F), (@, F)}

Corresponding to each of these possibilities, the improved algorithm gen-
erates the following theories.

true => t0r1(X,Y,Z), t0r2(X,Y,Z), £Q.
t0r1(X,Y,Z) => tP(X,Y,Z); tQ.
t0r2(X,Y,Z2), tP(X,Y,Z) => tQ.
tP(X,Y,Z), fP(X,Y,Z) => false.

tQ, £fQ => false.

true => t0r1(X,Y,Z), t0r2(X,Y,Z), £Q.
t0r1(X,Y,Z), fP(X,Y,Z) => tQ.
t0r2(X,Y,Z) => fP(X,Y,Z); tQ.
tP(X,Y,Z), fP(X,Y,Z) => false.

tQ, £fQ => false.

true => tOr1(X,Y,Z), t0r2(X,Y,Z), £Q.
t0r1(X,Y,Z2), fQ => tP(X,Y,Z).
t0r2(X,Y,Z), fQ, tP(X,Y,Z) => false.
tP(X,Y,Z), fP(X,Y,Z) => false.

tQ, £fQ => false.

true => tOr1(X,Y,Z), t0r2(X,Y,Z), £Q.
t0r1(X,Y,Z), £fQ, fP(X,Y,Z) => false.
t0r2(X,Y,Z2), fQ => fP(X,Y,Z).
tP(X,Y,Z2), fP(X,Y,Z) => false.

tQ, fQ => false.

The corresonding refutations are displayed in Figure 3.4.
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Figure 3.4: Four improved translations of Example 17
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Note that none of the improved theories exactly equals the canonical
translation — in the case where p always picks the positive polarities, all of
the negative literals are moved to the left.

It is immediate that the number of coherent theories produced by Defini-
tion 16 equals two raised to the number of atomic predicates in the formula.
A practical algorithm therefore also has the job of choosing one of these.

A common theme in automated theorem proving is minimizing the num-
ber of branches, because this is almost always beneficial to proof search.
Since each movement of a literal from right to left decreases the number of
branches (disjuncts) in a theory, a natural solution to the problem above is to
pick the polarity assignment p that allows a maximal number of atoms to be
moved. This is the choice our algorithm makes when asked for a single theory.
(In the example above, the algorithm would pick p = {(P,T), (Q, F)}.)

The resulting translation thus satisfies the (first) criterion from the pre-
vious section “by construction”. What about the others?

In order to measure how the translator handles theories which are already
coherent, we go back to the problem example of section 3.2.

Example 18. Applying the improved translation to DPE yields the theory

tR(V1,V2), fR(V1,V2) => false.
tE(V1,V2), fE(V1,V2) => false.
tRE(V1,V2), fRE(V1,V2) => false.
true => dom(a), dom(b), dom(c).

tRE(b,A), tRE(c,A) => false.

true => tRE(a,b).
true => tRE(a,c).
tR(A,B) => tRE(A,B).
tE(A,B) => tRE(A,B).
tE(A,B), tRE(B,C) => tRE(A,C).
tE(A,B) => tE(B,A).
dom(A), true => tE(A,A).
tRE(A,B) => tE(A,B); tR(A,B).

tR(A,B), tR(A,C) => dom(D), tR(B,D), tR(C,D).

which is the same as the input, except that the reflexivity axiom has been
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moved lower and the predicate goal has been replaced with false. In fact,
these predicates serve the same function.

So it appears that when a FOL theory is already coherent, its improved
translation does not change much. Indeed, it is easy to see this, and more —
that the translation is idempotent — by applying Definition 16 to a generic
coherent clause

VZA A+ AAy — By v---v B, (3.4)
with B; = 35.C{ A --- A C] . This yields the theory

T — TNNF(VZ.Ay Ao A Am—Bi v v Bn)
TNNF(VZ. A1 A A A BrvevBp) — T=A1 v v = A v By v By (L)
Ty an( r) = Fa,(Z) v - v T, (T)
T, (%) — Y. Tera. -ACL (@, )
o Ty @) A A Ty ()

8y

@1

B
CFCI1 /\---/\Cll (.’L‘

Tp, (Z) = . Tep pencp (Z,9)
Tep encp (Z,9) = Top(Z,9) A -+ A Tep (2,7)
The simplifier will remove the first two clauses. For each i, the pairs
Ty, (2) = W Tog . ncy (E.9)
Teiponci (,9) = Ty (3,9) Ao A T (Z,9)
will be combined into
Ty (7) = 3 Tey (T, 9) A -+ A Ty (T,9)

Then all of these clauses will be packed back into the third clause, so that
the only thing which remains of the set above is the clause

T%FAl(f)V---VFAm(ZZ") (35)
Vv HgTC% (fa Zj) ANAY jﬁC'll1 ('f7 g)

vV HgTC? (57 ?j) Ace A TCZ;L (fa ?7) (38)
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Now Fjy, are all atoms; they will be moved to the left of the clause unless
the rest of the input advises against it (by having more disjunctions of their
complements T4,), which is not possible if (3.4) is part of a theory produced
by the improved translation. Then (3.5) will be transformed into

Ta (@) v e v T, (&) = 3Toy(@5) A A Ty (7)

—

4 ElgTCf(fa y) ANA TCIQQ (f7 g)

\ ngTC{L(f, gj) VANRIMLRVAN TC{; (f, gj)

which is obtained from (3.4) by renaming the atoms A;, C} into Th,, T, ci-

If (3.4) is just a clause from some coherent theory, then some of the
atoms may get their polarity reversed. The resulting theory will have fewer
disjunctions. The clauses might also get reordered based on the heuristics
from section 3.1. But the essential structure of the input theory will remain
unchanged. Hence criteria (6) and (8) are both satisfied.

The previous discussion demonstrates that the behavior of the improved
translation is optimal for II,-formulas: they are simply filled into the coherent
format according to their logical structure. The theories thereby remain very
near to the original formulas in logical meaning, and the proof objects of
translation can be recovered effortlessly. Considering the simplicity of this
translation, the result is quite satisfactory.

But it opens the door to the next question: what about formulas of
higher complexity? Unfortunately, the improved translation does not scale
to formulas with high syntax trees, precisely because it only concerns itself
with atoms. In order to extend the improvement to more complex inputs it
is necessary to be able to reverse the polarity of arbitrary subformulas, and
not just the literals. Yet it is not immediate what this should even mean.

Another drawback is that the improved translation greedily picks the
polarities which minimize the number of branches. This might be a good first-
guess heuristic, but an advanced translator should be aware of other elements
of logical structure. For example, if the cost of removing one branch is that
three additional unguarded variables are introduced, is it worth to remove it?
Ultimately we want to allow the user to influence how the translator decides
these questions. That is, we want to develop a flexible system for fine-tuning
translator behavior.
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3.5 Hypertableau

We finish this chapter by sketching the completeness of the improved transla-
tion we defined. That is, if ¢ is a first-order tautology and p is an assignment
of polarities to atomic predicates, then L can be derived from the theory 7,
generated by the improved translation of —y. The formal proof of this will
be given in section 4.3, where we prove the completeness of the more general
method of translation. Here we will present an informal argument.

Again, the completeness of the translation is most easily established by
relating it to analytic tableau. It turns out that the idea of moving atoms
to the left is the ClL-equivalent of a well-known in the tableau community
optimization technique bearing the name of hypertableau. The latter is the
general observation that any application of a § rule can be delayed until
every disjunct that is an atomic formula occurs on the current branch in the
negative polarity. Its justification is very simple.

Suppose that 7 is a derivation in LK*, and let ¢ be an inference step that
uses the  rule:

o =1 - Lo, =1
Fiorveven L

Let £ be the subderivation of © which has ¢ as the last inference. Then
¢ can be permuted with other inferences in £ — without affecting the end-
sequent — until its context " has the property that —; € ' for every atomic
Pi-

For consider the branch &; ending in I', p; - L, with ¢; an atom. The
only rule of LK* which may use (; is the axiom rule Ax*. If such an inference
indeed occurs in &; then —p; must be derivable from I' alone — ¢; is not used
by any rules before Ax*. This derivation of —p; from I' can be placed in &
before «. The branching of the proof is thus pushed further back toward the
leaves.

Notice that no new steps are introduced into the proof. At the same
time, some of the facts which were used to derive —¢; might also be used
in closing the other branches. Thus there is a great potential for speed-up.
Indeed, the provers that implement hypertableau (meaning that they fire [
rules only when all atomic branches can be closed immediately) perform far
better than vanilla ground tableau provers. Accordingly, CL provers perform
better when the translation provides support for this optimization, which is
exactly what the improved translation does.
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When the clause
Tpfv(ﬁQf)vw(f) — Tp(f) V FQ(f) V T¢(f)
is changed into
Tva(ﬁQf)vga(f) A TQ(f) - TP(f) 4 Tw(f)

the use of the clause is blocked until the prover has derived an appropriate
instance of Ty (Z). But whereas a hypertableau prover is only able to move
the literals into positive polarity, the improved translation can also generate
the clause

Trzv(-Qa)ve (L) A Fp(Z) A To(Z) — T,(Z)
if it discovers that most of the theory’s P-disjuncts are positive.

The hypertableau is thus obtained from the improved translation by al-
ways taking p = Ap : A.T. This choice is consistent, but is completely
independent of the formula’s logical structure. Luckily, having the complete-
ness hold for this single p, as provided for by Baumgartner et al. [1996], is
sufficient to conclude it for all.

For suppose that 7, is one of the theories generated by the improved
translation of ¢. Let ¢ be obtained from ¢ by replacing every predicate
assigned negative polarity by the negation of a new predicate:

v =¢[(P—>=P)| p(P) = F]

Then 1 is equisatisfiable with ¢: a model (90, []) of either one extends
to a model of the other by asserting @ € [P] <= a ¢ [P]. Let T} be the
improved translation of ) which assigns all predicates the polarity 7. Then
T, and 7T} are identical theories up to renaming of predicate symbols (Fp
are replaced by T5). Consequently, derivations of L from 7, stand in exact
correspondence with derivations of L from 77; so whenever ¢ is the negation
of a tautology, L is derivable from 7,.

To summarize the relationship between hypertableau and Definition 16,
both implement the same optimization mechanism, but while hypertableau
makes an arbitrary choice, the improved translation tries to make an informed
decision.

Still, in order to obtain a general translation from FOL to CL which
has superior performance for complex formulas, it is necessary to go beyond
simple shuffling of atomic disjuncts. We need to be able to switch the flow of
proof search at arbitrary levels of syntax, under arbitrary logical operators.
In the section that follows, this need is fulfilled.
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Chapter 4

General Translation

This chapter will cover all aspects of our final translation algorithm. The
central idea consists of trying to extend in a natural way the mechanism of
reversing the polarity to arbitrary subformulas.

This approach has been independently explored by John Fisher [2008] in
his “fore-aft translation”.

4.1 Bidirectional reasoning

The translation of the previous chapter could move more than just atoms.
For example, suppose that a translated theory contains the following set
of clauses, corresponding to some subformula ¢ = Vz.(Vy.Pzy) v (32.Qxz).

T, — Tyy puy(z) v I2.Tg(x, 2)
TVy.P:By(x) - TP (SL’, y)

This has one disjunction and two unguarded doms',one over the disjunction.
The improved translation could produce the superior theory

T, — Tuy pay(z) v 32.T5(x, 2)
Ty poy(@) A Fp(z,y) > L

But this still has  as an unguarded dom in the first clause, and it’s the best
the improved translation can do. Yet we could avoid the free variable x if we

'Recall that by an “unguarded dom” we just mean a free variable that does not occur
on the left side of the clause.
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flipped the polarity of P not only at the atomic level of Tp(z,y) but before
the universal quantification takes place, like so

T, A Fyy poy(x) — 32.T0(z, 2)
FP(xa y) - FVy.Pmy(x)

In this case, we have a set of clauses which is trivially equivalent to the earlier
one, but without the pesky free variable and without disjunction!

Of course, this solution was easy to find because Pxy is atomic. What
would happen if instead the formula ¢ had the form ¢ = Va.(Vy.b) v
(32.Qxz), where 1 is an arbitrary formula in the variables z and y? In
this case the two clauses above would no longer constitute a leaf of the trans-
lation, but would be put together with the clauses generated by translating
1), the first of which would have the form

Ty(w,y) — -

depending on the top connective in 1. But now the usefulness of the opti-
mization above is put into question, because the second clause must — since
1) is still in positive polarity — have the form

T — FVy.w(:E) Vv Tlﬂ(l‘ay)

and this clause has a new disjunction with two free variables and no con-
straints on the left side whatsoever! So it’s better to stick with the original
version unless — the polarity of ¢ could be reversed as well, so that the
clause above would become

Fy(@,y) = Fyu(y) (4.1)

Accordingly, the theory generated by 1 should then begin with a clause of
the form “-- — Fy(z,y)”.

And so the process could be continued as long as we are able to flip the
polarities of each successive formula. This brings us to the following problem:
For each logical connective, how do we dualize the translation clauses to
represent subformulas standing in contrapositive relation?

We have just observed that this is very easy for universal quantifiers. Now
let’s investigate the case of disjunctions by continuing the example above with
1 of the form Pzy v Quzx.
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Normally we would have the clauses

Ty (y) = Ty(z,y)
Tw(ﬂ?, y) - Tp(ﬂ?, y) Vv TQ(y7x)

But if the first clause was changed into (4.1), then the second must be ad-
justed accordingly by moving 1) to the right side:

T— TP(ZL‘,’y) Vv TQ(y,l‘) Vv F¢(l‘,y)

And this will make everything worse unless we can prevent the extra disjunc-
tion and new unguarded doms by moving some disjunct(s) to the left, as our
improved translation could do:

FP(xvy) - TQ(yvx) Vv F¢(.T,y)

This is indeed a much better outcome, but it depends on being able to move
P to the left side. If the same formula occurs somewhere else in the input
with P negated, then only one of them could be treated in this manner. (We
might be able to flip @ instead, but @) might also be used elsewhere.)

To summarize, flipping the polarity of a disjunctive formula is only useful
if we can also flip enough of the disjuncts to cover all of the free variables
occurring in the formula. Since generally we cannot expect all of the disjuncts
to be atomic, nor can we be sure that the atoms we wish to move can be
moved without disturbing other parts of the translation, we again are in want
of being able to reverse the polarity of arbitrary subformulas.

Before we treat the remaining cases of conjunctions and existentials, we
can already observe the pattern which is emerging. It is most resembling of
the tableau rules for signed formulas, which extend Definition 9 by clauses
for negative occurrences. The complete set of rules is summarized in the
following table:

Operator Rule Type

W | Tlern-ngn] = Tlen]s oo, Tlea] | @
Flovn-npn]l — Flo | - [ Fleal| B

o | Tlervveal = Tlad |- [Tlea] | 5
Flonv---ven] — Fla], -, Flea]| «

y iyl — TIA@ ;
Flvigl =  Flold) §

] T[37.¢] —  T[p](b) )
FRZ.o] —  Fle](@) v

(X
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The positive rules (concerning formulas with sign 7") are exactly the ones
described in Definition 9, corresponding to coherent clauses generated by the
canonical translation of FOL formulas. The extension to the translator we
seek to define now corresponds to the negative tableau rules, but oriented
backwards.

For example, in the positive case of disjunction, we know that if the
formula \/ ¢; is true, then one of the disjuncts ¢; is true, hence the corre-
sponding clause in the naive translation. In the reverse case, to conclude
that the disjunction is false, we must know that each of the disjuncts is false.

Hence the clause
Foo neooNF, — F

P1V eV on

that we would get if we reversed the polarity of every disjunct ;. (The
variables 7 in F,, (%) will be suppressed for now.) This corresponds to the
negative rule for v in Table 4.1, read from right to left.

It may be a little unexpected that the rule for V does not exactly corre-
spond to the reversal of the negative rule in the table. This is because flipping
the arrow in the quantifier rules also flips the eigenvariable requirement: to
conclude F[VZ.¢], we don’t need to have F[¢](b) for fresh constants b —
any sequence of closed terms would do. Freshness is rather a prerequisite for
reversing the arrow in the positive case, since in order to conclude that VZ.¢
is true, we must be able to derive @(z) for arbitrary terms 7, so the reversed
rule must be subject to the eigenvariable condition.

Let’s now move on to the other connectives. The negative rule for con-
junction says that if ¢ = A\ ¢; is false, then one of the ;s is false, which can
be written as the coherent clause

F,—F, v---VvFE

Pn
Switching the direction of the arrow yields the clause
F, v---vF, —F,

that we need for the new translation. However, the coherent format does not
admit a disjunction on the left side, which means that it has to be distributed
over the clause arrow:

F, — F,
F,, — I,
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and it is this set of clauses that must be added to the coherent theory.

Flipping the conjunctions is therefore less promising than flipping dis-
junctions — whereas in the latter case, in order to break even we must only
reverse enough disjuncts to cover all of the free variables, conjunction re-
quires all of its conjuncts to be reversed, or else there will immediately be a
branching clause T — T, v F,, with empty left side, leaving all free variables
unguarded. Still, in some cases reversing the conjunction might successfully
remove a variable or two bound higher above.

The last connective which remains is the existential quantifier. Unfortu-
nately, here we have a real problem. The reversed existential rule cannot be
realized in coherent logic because of the dual eigenvariable condition, requir-
ing the bound variable(s) to appear on the left side as fresh constants. But
Definition 1 does not provide for any mechanism of left-sided freshness.

There are two ways to deal with this problem. The first is not to deal
with it. The second is to circumvent it.

A good case can be made for the view that moving existential subformulas
into negative positions is not desirable. The reason is that existentials are
essential anchors of the formula’s logical structure — they are responsible for
introducing new elements into the Herbrand universe, which determines the
domain of the partial model constructed by the prover at a given point of
the search. Thus altering their behavior will result in strong deviation from
the meaning of the formula.

In fact, for this very reason we will keep existentials in place in our final
translation from FOL to CL. This is in line with the criterion from 3.3 stat-
ing that the translation should not perform dramatic modifications to the
formula’s logical structure.

Nevertheless, for the purposes of having a more complete correspondence
between FOL and CL proofs, as well as a sense of conceptual closure, there
is a partial solution to the problem of reversing the polarity of existential
subformulas that was suggested to us by Jens Otten [2009] Although dualiz-
ing existentials is not possible directly within the rigid bounds of CL format,
an equivalent effect can be achieved using a trick known as Herbrandization.
This is an operation which is dual to Skolemization, and consists of replacing
the universally quantified variables of a given formula by function symbols.

The method is most easily comprehended as the compound operation
of first Skolemizing the existential subformula, and then reversing the po-
larity of the result. For example, suppose we wish to flip the formula
©(Z) = Fy.p(Z,y). Eliminating the existential quantifier via introduction
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of a Skolem function yields the new formula ¢°*(Z) = ¥(Z, f,,(Z)). Watching
the formula’s translation into CL while this happens, one observes the clause

T,(Z) — Jy.T,(Z, y) being transformed into

T¢Sk (f) - Tw (f7 fso(f))

And the contrapositive of this latter clause is

Fy(Z, f,(Z)) — Fs(Z) (4.2)

Thus the effect of Skolemization on an existential clause is to replace the
existential quantifier with a fact containing one more function (in place of
the quantified variable) depending on all of the variables which are free in the
corresponding formula. This reflects the fact that the constants introduced
by firing the existential rule need only depend on the terms which instantiate
the variables, and not necessarily on all of the terms on the given branch.
In the tableau world, this observation answers the name of 6% rule and is
viewed as a significant optimization of the Free Variable Tableau procedure.?

The intuition behind the above observation is the following. Essentially,
the new function symbol simulates the freshness condition in the existential
clause by defining a new domain element for every sequence of closed terms
that the truth of the formula ¢ could depend on. Dually, the fact that the
function f, in (4.2) is new means that the atom Fy (%, f,(f)) could only be
derived by firing the (universal) ~ rule at the point where f,(f) first appears.
Since this rule can be fired with any instance, the left side of (4.2) must then
be satisfiable with any closed term in place of f,(f). So the clause is sound:
if (%, f,(f)) can be refuted, then ¢ is false for & = 1.

In this manner, clauses like (4.2) provide a mechanism of left-sided fresh-
ness that we need to reverse the existential rule. In LK, this freshness re-
quirement appears as the eigenvariable condition in the right universal in-
troduction rule. The fact that we are able to deal with it means that we can
represent right-sided sequent rules as well, and are no longer constrained to

2The sensibility of this view is far from immediate — preventing a prover from doing
work which is evidently useless is as much optimization as it is debugging.

The same can be said about the so-called 6+ rule, which “liberalizes” this handling of
existentials further by allowing the same function symbol to be used for subformulas which
are equal up to variable renaming. Prudent choice of representation of formulas should
identify such subformulas automatically, and there are certainly no theoretical grounds for
defining Skolemization on subformula occurrences rather than subformulas themselves.
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the refutation-based approach of analytic tableau. That is, we can represent
full, cut-free LK.

Indeed, the true nature of the “fipping” operation lies not in the negative
tableau rules for signed formulas, but in the right-sided rules of the sequent
calculus. For example, when the translation of the formula —A v —B is
changed from

T-av-B— Fqv Ip

into
Ty ANTp— F_ay-B

the achieved effect is that the last inference of the LK-derivation is trans-
formed from

~Arl -Brl
NNF(—(A A~ B)) - L

into

THHA T+B
T—AAB

So negative translation allows us to represent positive reasoning!

This presents us with an opportunity which will be explored when we
prove completeness of the final translation. For now, we work to put all of
the pieces together into a definition. We quickly recap the reversed rules for
each connective.

A disjunctive clause of the form

o>l vVl

is reversed by flipping any number of disjuncts and flipping the formula ¢.
For example, one possible clause is

N NI Y VRV VT RVERRVE

Here ¢! denotes F,, (%) if ¢; = ¢;(%) is non-literal, and it denotes L from
Definition 16 when ¢; = L. We immediately see that there are 2" possibilities
for the top clause when ¢ is put into negative polarity, each corresponding
to some subset of the disjuncts.
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Because reducing branching is almost always beneficial, these possibilities
should be considered even when ¢ itself remains positive:

N AN N Y VR A VERRRVET

So the clause corresonding to ¢ is determined by the polarity of ¢ and a set
f < {1, ...,n} specifying which disjuncts are flipped. Each disjunct will in turn
have two possibilities for its polarity, and we must choose the one consistent
with §. If 2 € §, then ; must be flipped, and the clause corresponding to ¢;
should look like --- — gpzf . Otherwise ¢; should be treated positively like in
the basic translation, with its clause having the usual form ¢! — ---

To summarize, any disjunction ¢ = @1 v --- Vv ¢, gives rise to two clauses
for any given subset f of {1,...,n}:

Nel net =\ ¢ ()

ief igf

Aol =o' v\ ()
i€f if
Similarly, each of the other connectives will generate two or more clauses,
corresponding to whether the formula in question is reversed. Translations of
the original formula are generated by putting these together in a consistent
way.
The universal case is straightforward: when ¢ = V.1, the positive theo-
ries begin with

ol — (C7)

while the negative ones begin with
Yl — ! (")

There is also a clause “in between”, which represents the case when the
polarity reversal is stopped at the universal node:

'yl — L ()

Generally, (C"4) is inferior to (C¥~) when it comes to proof search, because
the polarity of ¢ might as well be flipped higher up, where it could potentially
eliminate some free variables. (Other things being equal, it is advisable to flip
subformulas as high in the syntax tree as possible, so that branches appear
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closer to the leaves, where they can be closed quicker.) Still, we will keep
(C"1) in the translation for now — this keeps it general and also simplifies
the completeness proof.

A few pages ago we claimed that when a conjunction is reversed it is best
to flip all of its conjuncts. But in the positive case, it makes perfect sense to
keep some conjuncts in the positive polarity and flip the others, translating
for example the formula ¢ = @1 A -+ A @, into

P o PL AP A AR
i ngt > 1L
eing -1
wh At — L

Since ¢ thereby gives rise to a set of clauses, we might as well split the
one with conjunction into individual implications:

' — o
¢ — ¢

¢ = P
This has almost no effect on the meaning of the theory — the normalizations
from section 3.1 will pack everything back into a single clause anyway —
but now we can express the sets generated by the positive rule concisely as

follows. For § < {1,...,n}, the positive conjunction is represented by the
clauses

' npl > Llieftufe >l |i¢h) )
By symmetry, the clauses
{ol >l iefbu{T > @lv ol |idi) c)

represent the negative case. One can enforce the requirement of reversing all
conjuncts in the negative case by only considering Cf’\_ when § is the whole
set {1,...,n}. This restriction will not be incorporated into the definition
however, because in some cases the extra flexibility offered by admitting all
possibilities might be desirable. (Allowing clauses of the form T — ¢! v ¢/ in
one place might reduce their number elsewhere. Also, when the conjunction
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is high in the tree, it might not have any free variables; then such clauses are
not too threatening, as they give rise to only one new branch each.)

As regards the existential formulas, we will not reverse their clauses here.
Instead, we will add an extra clause when we wish to flip the matrix of such
a formula. So in the positive case we just have the rule

o' — AZ.Y" (C)
and when 1 is flipped we also add the bottom clause for :
AP — L (C)

(Notice that this clause depends only on .)
Of course, if we truly wanted to reverse the existentials, we would instead
use the clause

vl = ! (C*)

where 1 is the formula F, (%, ﬁ,(f))
The translation could be defined explicitly in terms of the sets of polarity
choices made at the non-terminal nodes in the syntax tree. Instead, we will
define the set of translated theories by induction. When stated in this form,

the definition is easier to extend with other features or conditions. It also
immediately suggests a recursive implementation algorithm.

Definition 19. Given a first-order formula @, its general translation is built
up from sets of new predicate symbols, coherent clauses, and coherent theo-
ries. These are defined as follows:

Atoms: the fundamental particles of the translation.
e For every atomic predicate A € ®, let T4, F)4 be new predicates

of the same arity as A.

e For every non-literal subformula ¢ < ®, let T,,, F, be new predi-
cates of arity |FV(¢)|.

e For every literal L < ®, define the formulas L, L/ by




e For every non-literal subformula ¢ € ® with FV(p) = Z, let ¢,
¢! denote the formulas T,,(%), F,(7).

Clauses: the compound molecules of the translation.

For every subformula ¢ € ®, we define (sets of) clauses C*(¢) depend-
ing on the top-level connective of ¢:

e ¢ is aliteral L = (—)A(f). The clauses are

CT(p) : T = Ty(Z) v Fa(Z)
CH(p) Ta(Z) A Fu(Z) - L
e ¢ = Vz.9. The clauses are
CV+(()0) . (pt N djt
CHp): a1
C"(p) : Wl —
e ¢ = d7.4). The clauses are
C* () o' — A7
CHw) : T ]

e o= Vv -V, Forfc{l,.. n}, the clauses are

) Nelaet =\ ¢

i€f igf

) Nel -’ v\/e

ief i}
e 0= A+ A, For f<{l,..,n}, we have sets of clauses
CrHlp): et ngpl > Llieffu{e > wiligi)

G (p): Aol =@l lieffu{T —pivel |igh)
Theories: the building blocks of the translation.

For every subformula ¢, its general translation consists of two sets of
coherent theories G(p) = (P(p), N (¢)). They are defined by induction
on :
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°
AS)
|
~
-
=
@
=

Ple) = N(p) = {{CH (), CT(0)}}

@ = VZ.1p. Then

Po) ={T v {C™ ()} | TEPW)} v
{TO{C™ (@} | TeN (@)}
N(p) ={T u{C" ()} | T e N(¥)}

@ = 37.¢). Then

Po) =T W{CT (o)} | TePW)} v
{Tu{CT (), CH(W)} | T e N(W)}

e o= V-V, Forfc{l, .. n} put

) Plpi) ¢
G = {N(%) iej

(Equivalently, one may write G;(f) = m,,»G(¢i), where x; is the
characteristic function of § and 7; is pair projection.) Then

Ple)={Tiv - uT, u{C (@)} | F < {L,...n}, Tie Gi(f)}
N@p) ={Tio-uT, u{C/ (o)} [F={L ...,n}, TieGi(f)}
e 0= A A, Forfc{l,..,n}, let G;(f) be defined as in the
previous clause. Then
Ple)={Tiu - uT,uC " (¢) [T {1, ...n}, Tie Gi(f)}
N@) ={Tiv-vT, v () | F= {1, ...n}, Tie Gi(f)}
The Translation: its completed edifice. We let bidirectional translation of

® be the set
P(P) = mG ()
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Example 20. To give the reader a feel for the theories produced by the
bidirectional translation, we go back to Example 13, which concerned the

formula
® = (Ve.—Pz v =Qz) A (Fy.Py A Qy)

If we feed this formula to the bidirectional translation, it produces a set
of 128 theories, not counting members of N (®), of which there are as many.
It would be a waste of paper to display all of them here, but a selection of
some is given in Figure 4.1. All of the theories displayed must be augmented
by the clauses

true => tAnd_47.

tQ(V1), fQ(V1) => false.
tP(V1), fP(V1) => false.
true => tQ(V1); £Q(V1).
true => tP(V1); fP(V1).

When expanded with the above, all groups of clauses appearing in the
figure are actual members of P(®).
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tAnd_47 => tExists_46.
tExists_46 => dom(Y), tAnd_44(Y).
tAnd_44(Y), fAnd_44(Y) => false.

true => fAnd_44(Y); tP(Y).
£QCY) => fAnd_44(Y) .
tAnd_47 => tForall_42.

dom(X), tForall_42, fOr_40(X) => false.
true => f0r_40(X); fP(X); £Q(X).

tAnd_47 => tExists_46.
tExists_46 => dom(Y), tAnd_44(Y).
tAnd_44(Y), fAnd_44(Y) => false.

true => fAnd_44(Y); tP(Y).
Q) = fAnd_44(Y) .
tAnd_47 => tForall_42.

dom(X), tForall_42, fOr_40(X) => false.
tP(X) => f0r_40(X); £Q(X).

tAnd_47 => tExists_46.
tExists_46 => dom(Y), tAnd_44(Y).
tAnd_44(Y), fAnd_44(Y) => false.

true => fAnd_44(Y); tP(Y).
£QCY) => fAnd_44(Y) .
tAnd_47 => tForall_42.

dom(X), tForall_42, fOr_40(X) => false.
tP(X), tQ(X) => fOr_40(X).

tAnd_47 => tExists_46.
tExists_46 => dom(Y), tAnd_44(Y).
tAnd_44(Y), fAnd_44(Y) => false.

true => fAnd_44(Y); tP(Y).
Q) = fAnd_44(Y).
tAnd_47 => tForall_42.

dom(X), tForall_42, fOr_40(X) => false.
tQ(X) => f0r_40(X); fP(X).

tAnd_47 => tExists_46.
tExists_46 => dom(Y), tAnd_44(Y).
tAnd_44(Y) => tP(Y).

tAnd_44(Y) => tQ(Y).

tAnd_47, fForall_42 => false.
f0r_40(X) => fForall_42.

true => f0r_40(X); fP(X); fQ(X).

tAnd_47 => tExists_46.
tExists_46 => dom(Y), tAnd_44(Y).
tAnd_44(Y) => tP(Y).

tAnd_44(Y) => tQ(Y).

tAnd_47, fForall_42 => false.
f0r_40(X) => fForall_42.

tP(X) => f0r_40(X); £Q(X).

tAnd_47 => tExists_46.
tExists_46 => dom(Y), tAnd_44(Y).
tAnd_44(Y) => tP(Y).

tAnd_44(Y) => tQ(Y).

tAnd_47, fForall_42 => false.
fOr_40(X) => fForall_42.

tP(X), tQ(X) => fOr_40(X).

tAnd_47 => tExists_46.
tExists_46 => dom(Y), tAnd_44(Y).
tAnd_44(Y) => tP(Y).

tAnd_44(Y) => tQ(Y).

tAnd_47, fForall_42 => false.
f0r_40(X) => fForall_42.

tQ(X) => f0r_40(X); fP(X).

tAnd_47 => tExists_46.
tExists_46 => dom(Y), tAnd_44(Y).
tAnd_44(Y) => tP(Y).

tAnd_44(Y) => tQ(Y).

tAnd_47, fForall_ 42 => false.

dom(X) => fForall_42;
t0r_40(X) => fP(X); £Q(X).
tAnd_47 => tExists_46.

tExists_46 => dom(Y), tAnd_44(Y).
tAnd_44(Y) => tP(Y).

tAnd_44(Y) => tQ(Y).

tAnd_47, fForall_42 => false.
dom(X) => fForall_42;
t0r_40(X), tP(X) => £Q(X).

tAnd_47 => tExists_46.
tExists_46 => dom(Y), tAnd_44(Y)
tAnd_44(Y) => tP(Y).

tAnd_44(Y) => tQ(Y).

tAnd_47, fForall_42 => false.
dom(X) => fForall_42;
t0r_40(X), tP(X), tQ(X) => false.

tAnd_47 => tExists_46.
tExists_46 => dom(Y), tAnd_44(Y).
tAnd_44(Y) => tP(Y).

tAnd_44(Y) => tQ(Y).

tAnd_47, fForall_42 => false.
dom(X) => fForall_42;
t0r_40(X), tQX) => £fPX).

tAnd_47 => tExists_46.
tExists_46 => dom(Y), tAnd_44(Y)
tAnd_44(Y), fAnd_44(Y) => false.

true => fAnd_44(Y);
£Q(Y) => fAnd_44(Y).
tAnd_47, fForall_ 42 => false.
dom(X) => fForall_42;
t0r_40(X) => fP(X); £QX).

tAnd_47 => tExists_46.
tExists_46 => dom(Y), tAnd_44(Y).
tAnd_44(Y), fAnd_44(Y) => false.

true => fAnd_44(Y);
£Q(Y) => fAnd_44(Y).
tAnd_47, fForall_42 => false.

dom(X) => fForall_42;

t0r_40(X), tP(X) => £Q(X).

tAnd_47 => tExists_46.
tExists_46 => dom(Y), tAnd_44(Y)
tAnd_44(Y), fAnd_44(Y) => false.
true => fAnd_44(Y);
£Q(Y) => fAnd_44(Y).
tAnd_47, fForall_ 42 => false.
dom(X) => fForall_42;
t0r_40(X), tP(X), tQ(X) => false.

tAnd_47 => tExists_46.
tExists_46 => dom(Y), tAnd_44(Y)
tAnd_44(Y), fAnd_44(Y) => false.

true => fAnd_44(Y);
£Q(Y) => fAnd_44(Y).
tAnd_47, fForall_42 => false.

dom(X) => fForall_42;

t0r_40(X), tQ(X) => fP(X).

t0r_40(X) .

t0r_40(X) .

t0r_40(X) .

t0r_40(X) .

tP(Y).

t0r_40(X) .

tP(Y).

t0r_40(X) .

tP(Y).

t0r_40(X) .

tP(Y).

t0r_40(X) .

Figure 4.1: Some translations of the drinker’s paradox
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The example above might already be disconcerning to the reader: if such
a trivial formula produces such an immense number of theories, how will the
translator perform when faced with a medium-sized problem? Indeed, the
final refinements of the algorithm will deal precisely with this issue. For while
the improved translation might return exponential number of theories in the
worst case, bidirectional translation will necessarily split at every subformula.
So it’s rather imperative to find some way of controlling the exponential
explosion of theories. This will be achieved in the next section.

We conclude with a few comments on how the translation thus proposed
influences proof search. The most curious effect of reversing the rules (as
in the above example) on the structure of coherent proofs is the following.
Whereas in the basic and improved translations the syntactic depth of subfor-
mulas always increases downwards to the leaves (atomic formulas) — with
the firing of a non-literal clause always generating nodes corresponding to
the formula’s immediate subformulas — in the translation presented here
firing clauses of non-literal subformulas can affect the state of subformulas
that contain them. That is, the construction of the model proceeds not just
downwards from the root of the formula, but upwards from the leaves as well.
Furthermore, these two regimes of proof search are mixed together without
any awareness by the prover. It is for this reason that the translation de-
scribed in Definition 19 was given the name Bidirectional: in a very literal
sense, it allows the proof search to follow a pattern of fact inference which
goes both up and down in the complexity of the formula.

This by itself is not a new idea: the Handbook of Automated Reasoning
(?) devotes a whole chapter to the so-called ‘Inverse Method’, characterized
by proof search that proceeds from axioms to the goal rather than vice versa.
But the manner in which Bidirectional translation determines a hybrid proof
search before envocation of the prover is, to our knowledge, new.

4.2 Atomic constraints and parametric opti-
mization

In this section we develop a powerful method for controlling both the number
and form of translated theories in a very general way. But first we extend
Definition 19 with a simple amendment which weeds out a good bunch of
useless elements of P(®P).
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The motivation is as follows. One certainly wants the advanced transla-
tion to be at least as good as the improved translation from the last chapter.
The latter operates by moving literals to the left as much as possible while
keeping the top clause C'T redundant. But Definition 19 both allows dis-
juncts to stay positive after they have already been moved elsewhere, and
sometimes moves literals to the left in both positive and negative polarity,
necessitating inclusion of the branching clause C'". Applying the improved
translation to such theories would make them better. At the same time, the
theories thus produced are already members of P(®). The goal is to elim-
inate all of the ones which “reduce” to them by moving atoms to the left,
and the ones which need the top clause.

A natural way to accomplish this goal is to incorporate the mechanism
of improved translation into Definition 19 by associating to each theory the
choice of atomic polarities that its clauses must respect. That is, each theory
T € G(p) should carry with itself a set of atomic constraints p(T) map-
ping predicates of ¢ to polarities {T, F'}. Because they concern polarities of
atoms, the constraints should be introduced in the base (literal) case of the
translation.

In short, when the translation is applied to a literal L equal to A(?),
the returned theories P and N both consist of the bottom clause, but the
first also has the constraint p = {(A,T")} while the second has p = {(A, F')}.
When L = —A(f), the constraints are flipped. (This implies that even in the
positive case we require each negative occurrence of an atom to be on the left
side of the clause, with the only exception of existentials — which produce
clauses of the form 74, p, — Tp(x) even when (P, F) € p(T). Still, the fact
Tp(c) can only be used by the bottom clause, which immediately closes the
current branch.)

The constraints are then propagated and collected as the translation is
computed bottom-up. In the branching clauses, whenever theories are com-
bined for a given f, we must make sure that their constraints are consistent
and take their union. This guarantees that in the final set of translations any
given theory will have literals on the left in at most one of the two polarities,
rendering the clause C'T extraneous.

Since we are now interested in making the translated theories as few and
as efficient as possible, we will also use this opportunity to get rid of the
“linking clause” C"*(¢p), since it does not contribute any practical value to
the set of theories produced.

It is important to take notice that every coherent theory returned by
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the definition below does also occur among those returned by the previous
version. Hence it suffices to prove soundness and completeness for the bidi-
rectional translation.

Notation. In the following definition, a theory is a pair T = (C,p) where C
is a set of coherent clauses and p is a partial map from the set of predicate
symbols A to the set {T, F'}. Given p, : A — {T, F} for 1 <i < m, let \/p;
be defined as p; U - - - U p,,, whenever this union is a (single-valued) function.

Write \/ p;| if \/ p; is defined.

Definition 21. The Bidirectional Translation with Atomic Constraints gives,
for a given FOL formula ®, two families of theories G = (P, ). The atoms
and clauses are defined as in Definition 19. The theories are defined by
induction on ¢ < ®.

e o = L. Let the constraints p* (L) and p~ (L) be given by

L] et | p (@)
A(t) {(AT)}‘{(A’F)}
—AQ) | {(A )} | {(AT)}
Then
Pe) = {({C ()} 0" (1))}
N(p) = {({C (@)} p (D))}

e ¢ =Vz.. Then
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e o= V-V, Forfc{l,.. n} put

(5 — Plei) i¢f

al {Nwaief

Then
Ple)={UC v {C ()L Vpi) TS {1, ...on}, (Ciopi) € Gi(F),V pil}
N(p)={UGC v {C; (0}h Ve [T AL, ...}, (Cipi) € Gi(f),V pil}

e v = A A, Forf < {1,..,n}, let Gi(f) be defined as in the
previous clause. Then

(@=KU@UQ”@%VMHfEU7 g, (Cipi) € Gilf), V pil}
UG v (), Vo) [T {1, nd (Copi) € Gilf), V pil}

We will not distract the reader with any examples at this point, since
we're about to give the final definition which will make use of the atomic
constraints as well.

The primary difficulty in choosing the best theory from those generated
by Definition 21 is that moving some formula to the left in one place might
require moving something to the right elsewhere. For example, if a literal
is used to guard some of the free variables of a disjunction, then it must
be added to the set of constraints with the appropriate polarity. This will
prevent its movement at a place where guarding the variables might be more
decisive, for example in front of an existential clause. Because small changes
in one place of the translation unpredictably affect the others, finding the
best one should probably involve some kind of optimization mechanism. But
what would be the quantity being optimized?

In the previous chapter, we gave a list of properties that a good translator
should possess. One of these was:

e Highly customizable, it should be easy to change behavior by a small
change in a parameter. We want a translator which can be much better
used to navigate the (hopefully) large space of possible translations.

We argue that whenever one has a preference for a particular feature that
the translated theories should possess, then if this feature can be precisely
defined, it must be based on syntactic considerations. For example, one can

71



always wish for a translation that generates the shortest proofs. However,
one cannot a priori know which theory will yield the most effecient proof.
Instead, one must rely on heuristics or intuitive measures, such as the number
of disjunctions, in order to state this preference clearly. It is then based on
the structure of the coherent theories.

If we allowed the user to state such preferences in whatever manner she
chooses, and use the aggregation of these preferences as the parameter to be
optimized over, we would solve several problems at once:

1. Contain the explosion by filtering out theories with low aggregate score.

2. Provide for an extremely powerful yet simple mechanism to choose the
best theories from the class it produces.

3. Give an abstract interface to the decision-making core of the translator.

But how should these preferences be presented to us? We should let the
user decide. The only thing we should care about is being able to add the
“scores” of given theories in order to create a bigger one, and to compare the
scores of different theories. We need four things:

e A datatype .#Z. An object with type .# will be called a mass.
e An operation @ : A x M — M representing addition of masses.

e A relation <: .# x .# — Prop which will be assumed to be a partial
order between masses.

e An element o : . representing the zero (empty) mass.

Once we have these data, the only remaining parameter is a function
which computes the mass added to a coherent theory by a given clause.
This assumes the principle of locality, that the preferences depend on lo-
cal elements of the coherent theory’s structure. Aggregating these together
produces a compound mass of the theory which we are to optimize over.

In any optimization context, there is a trivial duality between maximizing
and minimizing the objective function. Here we choose to minimize the mass
of the theories, and think of mass as measuring the difficulty of proof search
as assessed by local syntactic criteria.

We now define the ultimate form of our translation from first-order logic
to coherent logic.

Let the quadruple (#,®, <, 0) be fixed.
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Definition 22. The General Translation from first-order logic to coherent
logic with mass structure (# ,®, <, 0), weighing function == mapping coher-
ent clauses to elements of .Z, and cutoff mass A gives for each FOL formula
® a family of coherent theories P(®) = moG(P). Here a coherent theory con-
sists of a set of coherent clauses C, atomic constraints p : A — {T, F'}, and
mass m : A .

The function == is extended to finite sets of clauses by

CeC

where association is, for example, to the right.
A set of coherent theories {7;} is compatible if \/ p; exists® and P m; < A.
Atoms and clauses are defined as in the previous definitions. Theories are
defined by the following:

e o = L. Then G(p) is given by

L_| P(y) | N(p)
A(D) H{UHCH (@)} {(A, D)} o)} | {HCH ()}, {(A, F)}, 0)}
—A®) [{{CH ()} {(A, )} o)} | {({CH ()} (A, T)}, o)}

e © = V. Then
(©) = {C U {CT (0)} 0, =(C" (p)) @m) | (C,p,m) € P(4)}
() ={(CU{C" (D)} 0, =(C" (p)) @m) | (C,p,m) € N(¥)}
o ¢ =374, Let C3 () = {CF*(p), C*(¢)}. Then

Plp) = {(Cu{CT ()}, p, =(C* () @m) | (C,p,m) € P(¥)}

U{(CuC (), p,=(C" (p))@®m) | (C,p,m) e N(¥)}
N(p) =

P
N

e p=p1 V-V, Forfc{l, .. n} put

_ Plp:s) i¢f
%m_{Nwaief

3Recall that \/ p; is | Jp; whenever the latter relation is single valued.
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Py = {(UC U (G (@) Vo =G () @ @i )
Ti = (Ci,pi, m;) € Gi(f), {T;} compatible

N ={ (UG v (G (@)} Ve (G (9) © Dy )

——

Ti = (Ci,pi, m;) € Gi(F),{T:} Compatible}

Then T (¢) = (UP;, UM).
e © =1 A+ Apy Let Gi(f) be defined as in the previous clause. Then
T () = (UP;,UN;), where for f < {1, ...,n}

P ={(UC v (), Vi =

¢/ () ® Dymi)
Ci,pi,mi) € Gi(§),{T:} compatible}

) (
= ( )
N ={(UC o e (9), Vb =
= ( )

(
CfAi(SO)) @ @lmz)

CZ7 pza m;) € gz (f), {7;} Compatible}

Example 23. We will now present the result of applying the general trans-
lation to the formula of Example 13, for which the bidirectional translation
produced 128 theories. Recall that this was the formula

¢ = (Vo.—Pz v =Qx) A

(Jy.Py A Qy)

Together with the simplifications of section 3.1, our final translator, when
fed the above formula as the input, gives the theories

%% Total mass: 4.0

tP(V1), fP(V1) => false.
tQ(V1), fQ(V1) => false.
tAnd_6(Y), fP(Y) => false.
tQ(X) => fP(X).
true => dom(Y),

Next theory:

74

tAnd_6(Y), tQ(Y).



%% Total mass: 4.0
tP(V1), fP(V1) => false.
tQ(V1), fQ(V1) => false.

tAnd_6(Y), fQ(Y) => false.
tP(X) => QXD .
true => dom(Y), tAnd_6(Y), tP(Y).

Next theory:

%% Total mass: 8.0

tP(V1), fP(V1) => false.

tQ(V1), fQ(V1) => false.

tP(X), tQX) => false.

true => dom(Y), tP(Y), tQ(Y).

The last of these yields a contradiction after two inference steps. While
in this case the mass assigned to the theory is not the least, this is an artifact
of the formula’s simplicity: for more complex examples, the mass is a pretty
good indicator of how long the proof search is likely to take (relative to other
theories).

The use of cut-off mass in the definition above yields a positive effect
which might have been unexpected. Because weighing against the maximum
mass is done at every node, any high-mass theories are discarded much faster
than they would be had mass acted merely as a sorting order. In fact, low
values of A allow us to control the rate of the exponential explosion. So
in addition to its use in selecting the better theories, the mass mechanism
also acts as a valve of the flexibility-versus-speed tradeoff inherent in the
translator.

4.3 Soundness and completeness

The purpose of this section is to show that, if 7 is any of the coherent theories
returned by the bidirectional translation of ¢, then

— is a tautology <= ' Fr.ct(e) -
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The clause C*(p) was added to accomodate those translations where ¢ ap-
pears in the negative position. In such a case, the right side could equivalently
be written as T 7 ¢/,

We begin with a few basic notions and properties concerning coherent
provability.

Definition 24. A coherent theory T is stronger than 7" if it proves at least
as much. Precisely, T is stronger than 7" if for any context I' and fact G we
have

' G=Tr7G

Definition 25. 7,7 are equientailing, or just equivalent, if T is stronger
than 7" and T is stronger than 7.

The notion of equientailence turns out to be too strong for our purposes;
it is more convenient to relativize it to some (excluded) set of atoms, or to
the particular formula ¢.

Definition 26. e An atom A(%) is p-pure if its predicate symbol is not
one of Ty, F, for some non-literal ¢ < .

e A context I' is p-pure if for each A € ', A is p-pure. A clause I' — A is
p-pure if I' and A are p-pure. A coherent theory T is p-pure if every
C e T is p-pure.

e Two coherent theories 71,75 are y-equivalent, written Ty ~, 7Ts, if for
all p-pure I', G we have

r =7 G < T 7 G
Proposition 27. (Weakening)
l'rQ@=T,Ar70

Proof. Induction. (If 0 is a derivation of I" - @, then 0 is also a derivation
of AR Q) O

Our next result is the “easy part” of the cut-elimination theorem in the
coherent setting.
Let T be a fixed CL theory. We write I in place of .
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Proposition 28. (Cut-Elimination) Suppose that for given T' and @ we have

'@ rLo-a
Then I' - G.

Proof. We proceed by induction on the derivation of ' - Q.
Base case: If Qe ' then I' =T U {Q} + G.

Induction: Suppose that C' € T is a clause of the form A A, — \/ Ba,
with {A9} < ' and I', B - @ for each n. From I',Q - G we get, by
weakening, that I', BY, Q) G for each n. Now we apply this propo-
sition (the IH) to (I, B7) + @, which gives T', BS + G, for each n.
Clause C' is applicable (with the same ), and we have I' - G.

This completes the proof. O

Remark 29. The previous theorem could perhaps be better termed as “cut
admissibility”, since it asserts that the derivation rule in its statement is
subsumed by Definition 1. This is also true in the classical case — if one is
looking for a complete first-order calculus, the simplest option is simply not
to include the cut as a rule of inference in the first place. Hence the choice
of name “cut-elimination” puts great emphasis on how essential the rule is
for having a good theory of proofs, suggesting priority even over the issue of
completeness. Indeed, if the above proposition failed, we would not have an
interesting logic — a point made by Girard et al. [1989].

The following characterization of CL provability is sometimes useful.

Corollary 30. In order that I' = Q it is necessary and sufficient that for an
arbitrary fact G we have

-G < I'Q+~G (4.3)

Proof. Suppose that (4.3) holds for arbitrary GG, and consider G = ). Clearly,
IQ+ Q. Hence I' - Q.
Conversely, assume I' - (). We verify (4.3).
(=) Weakening.
(<) Proposition 28. O

In what follows 7, C' is the notation for 7 u {C}.
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Proposition 31. Let C,C be coherent clauses with the following form:

(O Po(f)Apl(f)—)l
62 T—>P0(:?)VP1(:?)

1. Suppose that for some i, P; occurs neither in I' nor on the right side of
a clause in T. Then

7 Q = 70 @

2. Suppose that for some i, P; occurs neither in () nor on the left side of
a clause in T. Then

lH7Q = I'50Q

Proof. 1. Since one of the P; never occurs in 7 on the right, C'” can never be
used in the induction step (Definition 1) unless P? was in ' to begin with.
2. Dual. Since P; never occurs on the left, we have, for any T,

L7 Q=T 7 Q
by taking the same derivation. Hence any application of C is superfluous. [

Next comes the key lemma of the correspondence proof. Essentially, it
states the soundness and completeness of the hypertableau technique.

Proposition 32. Suppose that Cp = (Py(Z) A Pi(Z) — L) is the unique
clause in T containing the atom P; on the left side of the arrow (for some
i€ {0,1}). If C is any clause of the form N A — Pi(t) v\ B,, write C for
the clause PH‘(?) ANA, = B,. Then for any such C that also satisfies
P ¢ {A,}, and P; ¢ Q, we have

7@ < I'b1c @

Proof. Let T, Py, P1,i,Cp,C,T',@Q be as above.
(=) Let 7 be a derivation of I' -7 Q. We show by induction on v that
each use of C' in 7 can be replaced by one application of C' followed by Cp.
The base case is trivial: if () € I', then certainly I' -7 ¢ Q.

The induction case is also trivial, unless it uses C'. So assume that {A7 } <
L, PP, e (where P7 = P(o(t1),...,0(t))), and T', B] 15 @Q for each n.
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By the inductive hypothesis, I', BY 7 ¢ @ for all n. If we can show that
I', P’ —1.¢ Q, then we can conclude that I' =7 ¢ @ by using clause C.

But Py ; is already in I'. Hence clause Cp is applicable to the context
' U {P7}, yielding L. Indeed, ', PY 7. Q.

(<) Now suppose that v is a derivation of I' -7 Q. We prove by
induction that I' -7 @. Again, the only interesting case is when the last
clause used in v is C.

So suppose that {A7} < I', that for each n we have I', BY 7 ¢ @ and
[, P =7.¢ Q. By the inductive hypothesis, we also have I', B] i, @ and
I, P7 15 Q. The former could yield the conclusion by a single application
of C if Py ; were in I'. Alas, it might not be. Instead, we must follow the
derivation ¢ of I', P7 -7 @ until such an instance of P,_;(Z) appears, if it
ever does.

We now show by induction on ¢ that if A is any set of facts, then

F, PZ-U, A l_T,é Q > 1—‘, A l_T,é Q (44)

Base case: Q e 'u {P7} U A. By assumption, P; ¢ Q. Hence Q € " U A.
Induction: Let C' € T U {C} be a clause having the form A A/ — \/ B/,
and let 7 be such that {A7} S T UA U{P7} and I', A, P7, B 75 Q

for each n. By the inductive hypothesis I'; A, B]” =75 @, and we can
use C' to yield the desired I', A -5 Q whenever P ¢ {AT}.

But one of the assumptions guarantees that P; does not occur on the
left side of any clause except Cp. So if indeed P € {A7}, then C' = Cp
and 0 = 7. Hence P?, € ' U A, and, recalling that {A7 } < I', we use
clause C' to derive

F, A |_7—76 Q

(Note that we used weakening to get that I, A, By ;5 Q.) This
completes the induction.

To finish the proof, take A = ¢F. Since we have I', Y =75 @, (4.4) gives us

Corollary 33. Let T be a coherent theory.
1. Suppose that there exist C,C" € T which have the form

C=  MA--nA,—>P@vB v v B,
C'= An- A A APl - B v---v B,
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Suppose further that these are the only occurrences of the atom P in
the theory I/ Let P be a new predicate symbol of the same arity as P,
and let C',C" be the following clauses:

AyA-AAnAPE) > B v---v B,

U:
C = AN n A, S PH) VB v---v B,

Let T be obtained from T by replacing C and C" with C and C'. Then
T %P,F 7'

. Suppose that C' = (\ A; — P(f) v \/ B;) is as before, but now we have
q clauses

C! = Al A~ A ALV AP(H) - Bl v v BLY
C1 = AY Ao A ALy AP(E,) — Blv---v B,

Let P, C be as above, and let c be obtained from C* by removing
P(t,) from the right side and adding P(t},) to the left side. Then

T ~pp {C,C,....,COT \ {C,C,...,C

Proof. 1. Let Ty = T\{C,C"}. Consider the clause

Ch = P(&) A P(Z) - L
We have
T ="TC,C'
~{(pPP} To, C, C", CI% Prop. 31
~(p,P} To, C, 61,0# Prop. 32
~(pP} To. C, 6,,01% Prop. 32
~ (PP} To.C, c Prop. 31
_7
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2. Similarly, with the first application of Proposition 32 above repeated
q — 1 times.
0J

The above corollary is all that we need to prove the completeness of
the bidirectional translation with atomic constraints. Since it returns more
theories than the general translation, this suffices to prove the correctness
of our translation algorithm. However, we will provide the proof of the full
bidirectional translation, just for fun. For this we need one more simple
lemma.

Proposition 34. Suppose that the following clauses both belong to T :

Po(f) AN Pl(f) — 1
T — Py(Z) v P (Z)

For C having the form N An, — Pi(t) v \/ By, let C be defined as in the

previous proposition. Then

T.C~T,C
Proof. The proof of (=) goes exactly as before — it doesn’t use any addi-
tional assumptions on P;. The proof of the converse is dual. O

Finally, we will also need that right conjunctions distribute over the
clausal arrow.

Proposition 35. Let Cy be a clause having only conjunction on the right:

M N
/\ An = /\ B
m=1 n=1
Let C be the set {\ A — Bn}i<n<n. Then for any theory T :
T, C() ~ ¥ T, C
i.e. T,Co and T,C are equivalent.

Proof. 1f 7y is a derivation of I' -7 ¢ G, then replacing every application in vy
of a clause C' € C by Cj gives, with weakening, I' =7.¢, G.

Conversely, if § is a derivation of I' -7 ¢, G, then we replace in § every
application of Cj by a sequence of applications of every clause in C with the
same substitution instance. This is always possible because the left sides are
the same. O
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Theorem 36. Let ® be a FOL formula. Let (P, N) € G(®) be a positive and
a negative bidirectional translation of ®. Then

—® is a tautology —= @' —p L
— T N (I)f

Proof. We will prove a stronger fact, namely that
To ~e P, (T — &) ~g N,(®/ — 1)

where 7Tq is the basic translation of ® from Definition 4. This we prove by
induction on the number of “flips” in P and N.

For the rest of the proof, let 7 € G(P) be fixed.

For a subformula ¢ € ®, the bidirectional translation which yielded 7
picked either a positive or a negative theory from G(¢). We write this theory
as 7,. With this notation, put

_ )0 T, eP(e)
x(p) = {1 T e N (o) (4.5)

While P(¢) and N (¢) are the same when ¢ is atomic, the translation still

makes a choice for the polarity of ¢. This is the choice referred to in (4.5).
The rank of reversal is defined by induction as the number of times the

translation took the negative choice in the subformulas of ®. Formally,

e For ¢ atomic, R(T) = x(T).

For ¢ of the form VZ.¢), R(T) = x(¢) + R(Ty), where T, is the trans-
lation of v that was chosen in Definition 19.

Similarly, for ¢ = 37.¢, we define R(T) = x(p) + R(Ty).

If ¢ is of the form ¢ v -+~ v @, T =Tru--- U T, v C for T; € G;(f)
and f < {1,...,n}, then R(T) = x(p) + R(Th) + --- + R(Ty,).

Similarly, if ¢ is a conjunction ¢ A - -+ A @, then

R(T) = x(¢) + B(Ty,) + -+ + R(T;,)
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Let CTt = (T - @), C7~ = (®/ — 1), and put

TT

T,CT" T eP(d)
T,.CT— TeN((®)

In either case, let R(T ") = R(T).
We're to show:

76 %(I) TT (46)

We prove (4.6) by induction on R(7). The induction proceeds by applying
Corollary 33 to two clauses of 7', which at all times decreases the rank of
reversal of our coherent theory. The clauses are chosen by pivoting around the
maximal subformula ¢ € ® for which x(¢) = 1, i.e. the highest subformula
whose polarity was reversed in its translation to 7.

Base case: If R(T) = 0, then 7 € P(®), and 7" =T u (T — &) is in
fact the canonical translation of ® — which takes the positive choice
for every subformula of ®. Hence Ty and 7 ' are the same theory, in
particular they're ®-equivalent.

Induction: Let ) € ® be a maximal subformula with y(¢)) > 0, in the sense
that ¢ € ¢ € @, x(p) > 0 = b = ¢. Such a 1) exists if R(P) > 0.

We will now select the unique clause in 7" which contains 1)/ on the
left side of its arrow. This clause will be denoted by C*.

If ) =@, then 7' =T uCT~, and we put C* = CT~.

If ¢ = ®, then let ¢ be the subformula immediately containing 1, i.e.
let ¢ be C-minimal with the property that ¢» = ¢ < ®. Then x(¢) = 0,
and, since x(v) = 1, C* must be one of the following:

o If o = Vx.9h, then C* = C"(p) = (p' A ! — ).
e If p = 3z.1), then C* = CH(¢) = (Yt A ! — 1).

o If o =\/, and ¢ = ¢;, then C* = CY " (p), where f < {1,...,n}
is the set of polarities chosen by the translator at node . In this
case we will also have ¢ € f.

o If o = A\ ¢, and ¢ = ;, then C* = (o' Ap7 — 1). (In this case,
Che ¢/ (p), with i € f.)
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Notice that in all cases the clause C* has the form
AlA---AAmAwf—»Blv---an
with n > 0 only possible when ¢ is a disjunction. Replacing C* with
Ct AN ANA, Y VB vV B,

exactly produces the dual clause that would be a member of T if the
positive polarity was chosen for ©. Thus CT~, C%*, Gy, etc. are
respectively changed into CT+, CV7, C'fv+ etc. (The existential clause
simply becomes redundant, leaving behind C3*.)

To complete the proof, we now consider the structure of .

e ¢ is atomic. Then T, = {C"(¢), CT(p)}, and Proposition 32 gives
TT ~e TTU {C?}\ {C*}

The theory on the right has the rank of reversal one less than that
on the left, and is therefore ®-equivalent with 7y by the inductive
hypothesis. Thus 7 ~4 7To.

e ) = Vy.)' is universal. Because x(¢) = 1, the topmost clause in
Ty is CV= () = (" — 7). We call this clause C”.
Now, applying Corollary 33 to 7" with (C?, C”) as (C, C") gives us
that 71 ~¢ T ', where the latter is obtained from 7" by replacing
C* with C* and C° = C¥~ (1) with C* = C"(3)). Hence R(TT) =
R(TT) — 1, and by the inductive hypothesis 75 ~¢ T ~¢ T .

e 1 is an existential. Then T, € P(¢). Since x(¢)) = 1, this case is
impossible.

e ¢y = \/1; is a disjunction. As in the universal case, put C =

Cy "~ (¢) and apply Corollary 33 to T and the clauses (C*, C”).

The resulting theory 71 differs from 7" in that 1) was moved from
left to right in C*, and from right to left in C*. This switches the 1)
clause from the negative C;"" (1) to the positive Cf”(zp), decreas-
ing the rank of reversal of the theory. The inductive hypothesis
yields 7o ~¢ T, while TT ~4 T by the corollary.
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e If » = A ¢; is a conjunction, then Ty, = T; U ¢ () for some §
(where 77 is the union of the translations of ;). Writing 7' as
Ta vl (Y) v {C*}, we apply the second part of Corollary 33 to
T with C* and C*~ (%) to get

T ~e TGt (W) U {CF}

The theory on the right hand side has lower rank of reversal, and
is ®-equivalent with 7y by the inductive hypothesis.

This completes the induction.

Having established the fact that 7T ~ 7 in all cases, we note that
Li{otkrl —= Thrrem+ L
2. TrHrpl = Trrer- L
3. —yis a tautology <= T 4, L

These facts together give the desired result. O
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Chapter 5

Conclusion

In the previous chapters, we presented a general translation algorithm from
first-order logic into coherent logic with a strong view toward efficiency of
proof search in the resulting theory. The algorithm is able to return a num-
ber of quite different equivalent theories while providing considerable leeway
for fine-tuning the preference-selection mechanism. Furthermore, while the
variation in the logical structure of the resulting theories is significant, the
task of proof object reconstruction remains very simple.

One methodological problem we encountered in our work is the difficulty
of assessing overall translation—prover performance on a massive scale. The
Thousands Problems for Theorem Provers (TPTP) library (?) is maintained
for the purposes of testing theorem provers. However, the library places a
very marked accent on the method of resolution, and therefore the majority
of its first-order problems are presented in the format of clause normal forms.
(Most of the remaining problems contain either equality or function symbols,
neither of which we support natively.) Since formulas given in clause normal
forms are already Skolemized, this bias toward resolution provers made it dif-
ficult for us to evaluate how useful the resulting system can be in formalizing
general mathematics.

The overall level of contribution this vector of research will make to the
formalization problem therefore remains to be seen. Ultimately, one would
like to reduce the difficulty of formalization to the point at which it is com-
mensurate with the task of preparing a mathematical result in the Latex
format for publication. The ratio of time required to formalize a result ver-
sus the time required to “tex it up” is known as the de Bruijn factor. The
work of Bezem and Hendriks [2008] showed that using coherent logic one
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could, in some cases, make the factor approach unity. The possibility that
the method could be made general enough to cover full first-order logic clearly
should have been explored.

Having begun this exploration in the present thesis, we certainly believe
that the approach holds great promise. One piece of evidence is our work
with Stefan Berghofer, which will be reported in a joint article currently in
preparation. The principal result of that investigation was a full first-order
tactic for the Isabelle theorem prover, which was able to quickly solve the
vast majority of the problems used as test benchmarks for Blast, the fastest
first-order tactic of Isabelle (which implements a tableau prover).

What these partial positive results demonstrate most convincingly is that
coherent logic is a field which is very much awaiting further research. The
performance of coherent logic-based provers on some very difficult problems
is impressive. Our translator makes some of this power accessible to general
first-order formulas. Yet we believe that the most spectacular applications of
coherent logic await just beyond the horizon. The enterprise of formalization
will undoubtedly see significant progress in the coming years; it is very likely
that coherent logic will be an integral element of this development. In some
respects, it already is.
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Chapter 6

The Range Property

In this chapter we construct a counterexample to the range property for the
A-theory H. Additionally, we show that if a certain technical conjecture
holds then every term violating the range property must possess some of the
characteristic properties of this counterexample.

6.1 Introduction, previous work

A model M of untyped lambda calculus has the range property if every ele-
ment m of M, considered as a map m : M — M, is either constant or has
infinite image. A A-theory has the range property if its closed term model has
the range property. A long-standing conjecture of Barendregt et al. [1976]
states that the A\-theory H identifying all unsolvables has the range property.

The range property was originally conjectured for the lambda theory Ag
by Bohm [1968]. It was proved independently by Myhill and Barendregt
[1984]. Statman and Barendregt have isolated the recursion-theoretic con-
tent of the theorem (Barendregt [1993]), which yielded a considerable gener-
alization of it, including in particular all c.e. theories. Barendregt [1993] also
provides several constructive proofs.

The case of the lambda theory B — equating all terms with the same
Bohm tree — is resolved quite easily. If (Ax.M) is a closed lambda term,
then its range in A° modulo B is a singleton if z ¢ BT(M). When x € BT(M),
the Bohm out theorem yields the existence of Pe A with MP = x@) Then
the range of (Az.M) is infinite.

These results, together with the fact that all models usually considered for
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the lambda calculus have the range property, naturally lead to the question
of whether it holds for H. The latter is in many ways a natural theory — in
accordance with the identification

unsolvable = meaningless

it simply makes all meaningless values the same (the “f-value”). As we will
discuss shortly, there are many good reasons to believe the conjecture.

Partial results are given by Intrigila and Statman [2007]. Statman gives
some ideas for approaching the problem in its entry in the TLCA list (Stat-
man [1993]). Barendregt [2008] also discusses some proof strategies.

This chapter is organized as follows. First we recall some common notions
and notations from pure lambda calculus that will be used subsequently. The
exposition is minimal, so any reader in want of a more thorough introduction
is hereby referred to the book by Barendregt [1984]. Thereafter we make
some comments on the latest paper of Barendregt dealing with the range
problem, from 2008, and give some results about sequences of lambda terms
viewed as applicative input streams. Next we present our construction, which
depends on certain recursion-theoretic facts. The resulting term is rather
complicated; consequently we provide a simplification, and a thorough proof
that the term has finite range. While this negatively settles the question
of the range property for H, some outstanding issues remain. We strongly
believe that every term violating the range property must necessarily possess
some of the characteristic features of our counterexample. While we have
not been able to prove all of our conjectures, we report the partial progress
in this converse direction as well. Finally, we discuss some other interesting
open problems brought out by the range property question.

6.2 Setup
Lambda terms are given by the grammar
A= z|AA Az A

Here x € {vg,vy,...} denotes a variable. The terms are identified modulo
a-equivalence. Elements of A come to life once we stipulate that

(Ax.M)N = M|z := N|
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where M|z := N| denotes the lambda term obtained by renaming bound
variables of M to be distinct from the free variables of NV, and substituting
N for z in M. (This is called the -rule.)

The following notation is standard:

I
o K = \uy.z

o UM = A\zy...T0.1;

Y = M.z f(z2)) e f (z2))

[M,N] = Az.xMN, x¢ MN

(My, ..., M) = Av.aMy ... M,, x¢M

From the inductive definition of A-terms above it follows that any M € A
must have one of the following forms:

1. Aey...qpyPy ... Py,
2. Ary ... 1. (A2.Q)FPy ... Py,

with [,m > 0. (If this notation is unfamiliar, see Barendregt [1984].) In the
first case we say that M is a head normal form; in the second case we say
that M has a head redex (Az.QQ)Py. We say that M has a head normal form
if there is some N € A which is (-)convertible with M and is a head normal
form.

If M has a head redex, it can be contracted to yield a new term M’,
which will again have one of the forms above. If M’ is not a head normal
form, its head redex can be contracted again, yielding M”, and so on. If
eventually this process brings us to a term which is a head normal form,
then we call this term the principal head normal form of M and say that the
head reduction of M terminates. The principal head normal form of M, if it
exists, is denoted by phnf (/).

With the Church—Rosser theorem, it is not difficult to see that M has a
head normal form if and only if the head reduction sequence of M terminates
(especially if one recalls the result known as Standardization).

A closed term M is solvable if there is a sequence of terms Nj ... Ny such
that MN = I. A general term is solvable if its closure is solvable. The
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following proposition is one of many (Barendregt [1984]) reasons to consider
terms without head normal form as divergent computations.

Fact (Wadsworth). M is solvable <= M has a head normal form.

We recall the notion of Bohm trees. For a set S, the set of all finite
sequences of elements of S will be denoted as S™* or S=%.

Definition 37. For M € A, the Béhm tree of M is a partial map
BT(M):N* — A

defined by induction on o € N*.

If M is unsolvable, then dom(BT(M)) = . In this case, we write
BT(M)(o)1, or BT(M)(o) = L.

If phnf(M) = A\Z.yFy...Py,—1, then

e BT(M)(Q) = ALy,
e BT(M)((iy*o) =BT(P;)(c) fori<m,
e BT(M)((iy=0o)= L1 whenever ¢ > m.

A A-theory is a set of equations between lambda terms which is closed
under the congruence axioms and includes [-conversion. The canonical -
theory is the one which includes nothing else:

A={M=N|M=4N}

Two other theories are of importance to us: H and B. The former is
generated by taking as axioms the equations

{M = Q| M is unsolvable}
Equality in H can be characterized by () reduction: if we add to § the rule
Q: M —q Q M unsolvable
then the corresponding Church-Rosser theorem holds (Barendregt [1984)):

M='HN(=)E|Z M—»ﬁQZ«—BQN
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B is the theory which identifies all terms with the same Bohm tree:
B={M=N|BT(M)=BT(N)}

Finally, the theory H* is the unique Hilbert—Post completion of H (as
well as B), which characterizes equality in domain models of the lambda
calculus. It can be defined as the theory of contextual equivalence:

H*={M = N|VC[ | C[M]solvable <= C[N] solvable}

Recall that a A-theory .7 has the range property if for each F' € A°, the
set {[FX]7|X € A} is either infinite or consists of one element. It is known
that A, B, and ‘H* have the range property. Here we show that H does not.

6.3 Intuition

We begin with an incisive observation made by Barendregt [2008].
First of all, adding equations to a A-theory 7 only decreases the number
of =7-equivalence classes in the image of A° under a given term F. Therefore,

T < T' — |Range’ (F)| = |Range” (F)|
In particular,
|Range(F)| = |Range™(F)| > |Range"(F)| (6.1)

Secondly, we know that the range property holds for the first and last
theories in the above sequence. Hence the condition co > |Range™(F)| > 1
showing that the range property fails for H can only be consistent with (6.1)
if Range(F) is infinite and Range®(F) is a singleton.

The conclusion is that x does not occur on the Bohm tree of M in F' =
Az. M, but it does occur in every S-reduct of M (indeed, in every fQ-reduct).
This is a strong condition. For example, it implies that the range property
holds for all lambda terms with finite Bohm tree, which subsumes (and gives
a soft proof! of) Proposition 3 from (Intrigila and Statman [2007]).

Barendregt [2008] concludes with the following discussion:

'A Lambda Calculus proof is “soft” if it does not contain analysis of the syntax of
lambda terms. Soft proofs use high-level results like fixed-point theorems, continuity, or
semantic arguments. In contrast, proofs by induction on derivation of equality, or on the
syntax of terms, are “hard” proofs. They use concepts like reduction and contexts, and
often quote the Church—Rosser theorem.
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Let F' be a possible counterexample. [...] Then z ¢ BT(Fx),
but x € FV(M) for all M =4 Fz. This means that during the
growth of the Bohm tree of M the free variable x is “pushed into
infinity”. If some trace of x towards infinity occurs in a context
xP; ... P, with n maximal, then the range of F' is infinite by
considering F'(Azxy ...x,.c). The case that is left is that in Fz
the free variable x is pushed into infinity and gets more and more
arguments to eat. An example of this situation is an F’ such that

Fr =5 A\z.z(F(2§)z). Then

Fr=X22(F(2Q)z) = Az.2(z((F(2QQ2)2)) = ...
= A2 (F(xQ)z) = ...

In this case Range™(F) has cardinality one, as sooner or later
MQ~" =4, Q. The difficulty is that in general, x, while being
pushed to infinity, may get an infinite sequence Py, P, Ps, ... as
arguments (possibly containing the x) and that it is not clear
which arguments M can “eat themselves through” this sequence.
(We saw that through the sequence €2, €2, -+ of cumulative argu-
ments, no M can eat its way, i.e. eventually becomes unsolvable.)
It is not decidable which terms can eat themselves through a
given infinite sequence.

Regarding the last claim, let us remark that the decidability question
does not make sense if we consider both the sequence and the “eater” M
as inputs to an algorithm. (Obviously — sequences are infinite objects, and
an uncountable set cannot be enumerated by finite inputs over a countable
language.) Hence the question can only be formulated as follows: For a
sequence S of terms, is there an oracle Turing machine that, given S as an
oracle, recognizes the set of lambda terms M which stay solvable even as
they are applied to ever more elements of S7

In this interpretation, it is indeed pretty obvious that the question must
be TI5-complete for general S. That it is IIJ is immediate; that it is IT5-
complete can already be seen for S computable. For consider the term
M = Anz.{M(S*™n)(z{(n))), where ST is the successor map on the Church
numerals. For a partial computable f: N — N, let L; € A° lambda-define f,
and let Xy = Y(Azz.2LsIz). As is known, the problem of testing whether f
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is total is IIs-complete. Yet we have

ftotal <= (Mco)Xy #y (Mco)Q2
— Vn Xglcoy...{cp) #x 2

i.e. f is total if and only if Xy can eat its way through {cy), (c1),....

One could suppose that the sequence Py, P, ... in the infinite applicative
context of x must have a measure of effectiveness because it is constructed
by a lambda term. However, the term Y(Afz.[f(zK), f(2(KI))]) pushes its
argument x to infinity, the traces of x form a Cantor space, and each gives x
an infinite applicative context distinct from all others. In this case the range
is infinite, but the example shows that the sequences fed to x don’t have to
be effective — and can in fact have arbitrary Turing degree.

The suggestions of Barendregt are indeed elucidating. They explain why
the counterexample to the range property, if it exists, must be complicated.
With these constraints, we set out to prove the range property for H — and
were quite surprised to discover a term with the behavior described above.

We begin exactly where the previous discussion left off. While the final
proof does not require the notion of “trace” to be formalized, we provide the
following definitions to make the intuition precise.

Definition 38. Let M € A. The Gross—Knuth sequence of M is the sequence
of A\-terms (M,,) = My, My, ... defined by

[ ] MO = M
e M, is the full development of M,.

Recall that a development of a lambda term consists of recursively con-
tracting all of its redexes and their descendants, until only newly created
redexes remain. The finite developments theorem states that all develop-
ments are finite — and in the Ag case end in a unique term. This is the
manner in which M, is obtained from M,,.

Alternatively, the Gross—Knuth sequence is the sequence of reducts of M
produced by the Gross—Knuth reduction strategy. By (Barendregt [1984]),
this sequence is cofinal in the reduction graph of M.

Definition 39. A position 7 in a lambda term M is just a one-hole context
C| ] such that M = C[N] for some N (= denotes syntactic equality). Since
this IV, if it exists, is unique, we call it the subterm of M at position .
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Just as in the case of first-order terms, contexts have an obvious partial
order between them. (Unless stated otherwise, all contexts are assumed to
be one-hole contexts.)

Definition 40. 1. Let C[ ],C'[ ] be two contexts. We say that C[ |
is more general than C'[ |, or that C'[ ] is an instance of C[ |, if
there exists a context D[ | such that C'[ | = C[D[ ]]. In this case
we write C[ | C'[ .

2. Let (N, m) be an occurrence of N in M. Let D[ | be the most general
(-minimal) context with the property that = = D[[ ]P] for some
P. Then C[ ] =1 ]P is called the applicative context of N, and
C[N] is called the scope of (N, ).

3. A subterm occurrence (N,m) commands (N',7') if n' occurs in the
scope of (N, ). That is, there exist contexts C[ |, D[ | such that
7=C[[ ]Pi...D[N']...P] and 7' =C[NP,...D[ ]...PF].

Note that the last two notions make sense for positions themselves, not
just for subterm occurrences. Hence we will sometimes talk about the ap-
plicative context of m when N is clear from the context.

Linguists use the expressions “c-commands”, “m-commands”, or “gov-
erns” when they say that X commands Y’; this is a central notion in binding
theory. All it says is that Y occurs in an argument of X. In particular, the
head reduction strategy evaluates X before Y.

Definition 41. A trace of a subterm N < M is a sequence of positions
IT = {(m,) such that 7 is an occurrence of N in M, and for each n, the
subterm of M, at position m,,; is a descendant of the subterm of M, at
position m,, where (M, ) is the Gross—Knuth sequence of M.

One shortcoming of the above definition is that it does not take into
account €2 reduction, which is necessary to characterize equality in H. There
are several ways to deal with this: we could single out those traces that
never get inside of an (2-redex, we could make use of the finite developments
theorem for fQ-reduction (Barendregt et al. [1976]), or we could use the
quasi—-Gross-Knuth strategy, which interleaves full S-developments with -
normalization (Barendregt [1984]). Either of these approaches will generalize
to . We will go with the first one since it keeps traces effective.

96



Definition 42. A trace II is imperishable if for each n, the occurrence 7, is
not inside an unsolvable subterm of M.

Definition 43. A trace II of N is maximal if for each n, no descendant of
7, commands 7, 1. Equivalently, Il is maximal if for any other trace II" of
N, 7, never commands 7,.

Now we briefly explore for which input streams (sequences of terms) one
can always find terms that eat themselves through the sequence.

Definition 44. Let ./ = (M,) be a sequence of lambda terms. Write
X~y Yif XMy...M, | =4 YM,y...M, ; for some n. We write A°/.% for
the set {[M].. | M € A°}.

Example 45. Let .¥ be one of the following sequences:
o ' =(M,)=(I,1,1,...)
o ' =(M,y={,Q1,Q01,...)
o ' =(M,)=(I,I,Q,1,0,Q1I,...)
Then |A°/.7| = w.
Proof. A simple exercise.
e Let Xn ={(Xn). Then n # m = Xc, #» Xcp,.
o Take Xn = Q\y.Xn).
e Take Xkn = (kK(X(S"k)n)). Then Xcoc,, ~» Xcoc, = n =m.
Indeed, A°/.# is infinite in all cases above. O

As can be seen in the pattern above, an input stream (M, ) has “infinite
range” if an argument can be passed through (M, ) by hopping from one
solvable term to the next one. The next proposition formalizes this intuition.

Definition 46. A A\-term M is fully solvable if there are terms Ny,..., Ng
such that M N = I.

Notice that M € A is fully solvable ift M = AZ.z; P iff M is solvable and
its head variable is bound.
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Proposition 47. Let (M, ) be given. If infinitely many fully solvable mem-
bers of (M, can be computably enumerated, then A°/{M,) is infinite.

Proof. Suppose there exists an infinite c.e. set {(ng,mo), (n1,m1),...} such
that for all ¢, m; = #M,,,, and M,,, are fully solvable for infinitely many .
By basic computability theory, this is equivalent to the existence of a partial
computable function h : N — N with infinite domain such that

Vn.h(n) | = h(n) = #M,, M, fully solvable

(A function is partial computable iff its graph is c.e., and we can make h
diverge whenever M, is not fully solvable.)
Let G A-define the following pcf:

gn) = let (k= pk =n.h(k)])in (h(k),k —n)

We assume the coding is such that, if g(n) = (#M, d), then Gc, U} = "M" and
GcnU% = ¢4, where d is the distance from n to the next element enumerated
into the domain of h above n.

Next, define

R = [ci,cp] phnf(X) = Axy...xp.2P ... P,
" X unsolvable
Qan = let [m,d] = Gn
[l,p] = Rm
in Avy ... vgz.2(U8) ' Qa(n + d)
= (Ag-(Ar.(gUiK Az U (rUKT )z Qa(c n(gU)))))) (R(9Up))) (Gn)
Finally, put
Xj = QCjCO

By induction one verifies that when n is in the domain of h, X;(M;)™"
has the form Az.z... while X;(M;)™ " is Qc;.... So X; stays solvable —
it survives (M;). Yet X; #uy Xy if j # j', because the parameter c; is
always propagated through. O

Corollary 48. Let (M, ) be a computable sequence of closed terms. Then
A/~ is either infinite or is singleton.
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Proof. If A°/ ~¢y,y does not collapse to a single ~yy,y-class, there exists
some X € A” such that X survives (M,) (that is, X #,y ©2). This is only
possible if (M,,) contains infinitely many solvable terms — for otherwise no
X could eat its way through the sequence. Since M,, are closed, these terms
are moreover fully solvable. Now the previous proposition applies, because
we can enumerate these terms by waiting for their head reduction to converge
(which is easy to do when (M,,) is computable). O

Moral: If an input stream has finite range, then it cannot be given by
any effective method. This fact is at tension with the goal of constructing a
lambda term that can generate the stream.

6.4 The Devil’s tunnel

Recall that for a given (M,,), A°/(M,,) is infinite if one can “hop” through the
solvable elements of (M, ) while carrying a parameter. We have seen that
among sufficient conditions for the existence of such a “hopper” are that
the sequence is closed and computable, or that infinitely many fully solvable
terms M, can be effectively enumerated. If we could find an effectivity
condition which was necessary for the existence of these hoppers, then we
could try to construct a counterexample by making “solvability gaps” so large
that no lambda term could hop through them while carrying a state.

We will now define a family of sequences in which the islands of surviv-
ability are given by an arbitrary function f : N — N. All of these sequences
will have I as a canonical “stateless” survivor. The counterexample is ob-
tained by letting the functions grow so fast that no other terms can survive
the sequence.

Definition 49. Let f : N — N be strictly monotone.
1. Af:N—Nisgiven by Af(n):= f(n+1)— f(n) — 1.

2. f:N— N*is given by f(n) := (f(0),..., f(n—1)).

Definition 50. Let f : N — N be strictly monotone with f(0) = 0. The
Dewil’s tunnel induced by f is the sequence of terms (F,,) defined by

P {Q n ¢ Range(f)

k
Uiﬁk; n= f(k)
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Proposition 51. For any f, I survives the Devil’s tunnel {F,).
Proof. By induction on k, we show that
(FY® =1 (6.2)
Base case: Since f(0) = 0, I(F,Y™? = I by definition.
Induction: Assume I(F,) '™ = I. Then
I(FY T8 = YT W By Frayan -+ Frasen
= sy Frwy+1 - Fraror
— yd) L F
af (k)£ f(R)+1 F(k)+of (k)
= (AZo--Zagr) o) Eey 1 - Friysar)

= (ATask)-Taf(k))
—1

By (6.2) we have for every n € N:
I=XE) "FoFu Fimy
Thus I{F;)™" is solvable for all n, so I survives (F},). O
Definition 52. A tree is a partial map 7" : N* — N such that
e 0 € 7edom(T) = o€ dom(T)
e 0gx(iyedom(T)=1i<T(o)

Definition 53. Let f : N — N. Say that f is amenable if there exists a
computably enumerable tree T" with f an infinite path in 7'

Proposition 54. Let (F,) be the Devil’s tunnel of f. Then
|AY~p5| > 2 <= Af is amenable.

Note that by Proposition 51 there are always at least two distinct ~¢p,y-
classes.

Proof. We prove (<) first.
Let « = Af, so that a(n) = (Af(0),...,Af(n—1)). Assume T is a c.e. tree
such that Vn.a(n) € T. Define a Bohm-like tree B as follows:
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e B(O) = (1, T())

o B(o+ (i) = (U701, T(0 = (i)))

Since T' is c.e. so is B. By the Characterization Theorem (Barendregt
(1984, 10.1.23]) B = BT(M) for some M € A. Since M, = A\&Z.2, Mouiy =

T ¢ FV(BT(Myuy)), we can assume without loss of generality that

fo ¢ MJ*(i)

(6.3)

(If the reader is not convinced, she may interpret the equality in what follows

as being in B — this will not affect the conclusions.)

We claim that M is a survivor of (F,,) and that M »(p,y I. To this end,

we show by induction that
MCEY ™ = Az 2Mauyucoy -+ - Manycram)-1)
Let t(n) = T(a(n)). The above can be rewritten as
M{EY™™ = Az 2 Magayay) ™
From the definition of M, we have, for n > 0:
Moy = )\x(]---xt(n—l)—l-xt(n—l)—l<Ma(n)*<i>>~t(n)
We now proceed with the proof of (6.4).
Base case: By definition, a(0) = () and so ¢(0) = 7'({)). Thus

M<F,~>~f(0)

= MY = M

= Az.zMy - - Mer(gy)-1

= Az.2Mu0)x0) * * * Ma(oyst(0)=1)
= Az.z(Ma(o)*<z>>~t(0)
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Induction: Assume (6.4) holds for n. Then

M<Fi>~f(n+1)
= MCEY ™ Fyy - Frnan a1
=am) (A2 Magyacis)™ ) Fiiy -+ Frtnany—1
- Ff <M *(i>>~t(n)Ff(n)+1 e 'Ff(n+1)—1
UAfE gMa<n>*<o> - Mognyctm)y-1y EFpmy+1 - Frman)—1
=(a(m)er) Mamyafmy) =" Mamyctn)-1y Frmy+1 - Fman)-1
= Ma(ni1)Ma(nys(afmy+1y - Man JeCen) EFfrmy+1 e Frmy+afm)
= Matuin)Migysr -+ Migy1 F1 -+ Fagn)
= MogniyNi - Nigny 1
=(6.5) (AT0-- () 1-Te(m)y 1 Mamiryacs)” )N -+ Nyny 1
=(6.3) ()\901 -Li(n)—1%- Z<M (n+1 *<z>>~t(n+1))N1 e 'Nt(n)q
= AZ-Z<Ma<n+1>=x<<z'>>~“"“)

This establishes (6.4). As a consequence, we get that BT(M(F;)™™) is infi-
nite for all n. Since N(E)Y™™ = M{(E)Y™"™ = N(F,)™" = M(FY™" for all k >
n, we know that N can be neither I nor €2, for otherwise N(F;Y™"™ would
have a finite Bohm tree (see Proposition 51) while N(E)Y ™" =5, M(F)™ —
N(FY™* =5 M(F,)™". This concludes the proof of («<).

Conversely, suppose Q #(py M #¢py 1.

Let T be the partially A-labelled tree defined as follows:

() = (M, f(1)),  where MO =M
‘ Mo*(i) = i ~1
(st phif(,7(r) U™
T(o = (iy) = = \g..tp.yPr - Py,
) m T (0)UiQ - - - Q is unsolvable

Note that there are ¢ omegas following U:. Also T is c.e., since given o and
1 one only needs to wait for the head reduction of a lambda term depending
on ¢ and ¢ to terminate in order to get the label of o = ().

We now prove:

M{EY™ = 1 T(af(n)) (6.6)
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Base case: M{(F)™O = M(FY™" = M = mT(0) = WlT(A—)f(O)).
Induction: Assume M{F;Y™*™ = 7, T(af(n)). Then
MCEY D = MCEY O Fyny -+ Fyuan
=am mT(B] ()00 0

=mT(af(n)={af(n)))
as long as M(F;)~""" ig solvable and Af(n) < WQT(A—)f(n))._T)he for-
mer holds since M #¢g,y, Q. As for the latter, suppose that T'(Af(n)) =
(M{ENY™ k) with k <Af(n). Then
MUENY ™ = Nag.xy.25Py -+ P,
with I,m < k <Af(n). But then
MCEYD = (ageotrai Py Po) Fyny -+ Fyniny
= (A&gee. 2 Py -+ P) Fyuy (S0~

Among the first [ + 1 < Af(n) + 1 arguments of M{F)/™ | the only
one which is not Q is Fy,). Thus we must have 7 = 0 in order for

MCEY ) 16 be solvable. But

0Py Plng = Fyi)] = USSP P,

_ 0f(n)—m
- UAf(n)fm

since Af(n) = m. Putting d = (Af(n) —m) + [, we get
MCEY O = Oy U0 ) = U
Since M is a survivor, Fy(,)11+q must be Fyqy) for some n' > n. Then
MCEY = Uiy Fruy-r
= UgFsye1 - Fryra
= T =52 Y™
contradicting the fact that M #gy I.
We conclude that Af(n) is indeed less than WQT(A_f)(n)) and that

MYCENTOH) — o P(af(n + 1))
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By (6.6) A—f) is an infinite path in 7. Thus it is also an infinite path in
the tree my o T', still c.e. So Af is amenable. O

Proposition 55. There exists a function f: N — N which is not amenable.

Proof. We will construct f using the finite injury method. Let {¢.} be an
enumeration of the partial recursive functions. Let W, = dom(y.) be the
eth c.e. set. W, will denote the finite set of elements enumerated into W,
by stage s. Formally, W, = {x : p.s(z)|} n{0,....,s — 1}, where ¢, s(x)]
means that the eth partial function (eth Turing machine) halts on input z in
at most s steps. The function f will be constructed by a sequence of finite
approximations {f,} which at any given point stabilize after finitely many
steps. We will then take f := lim,fs. The resulting function f must satisfy,
for every e, the following requirement:

—

R, : e a tree = An.f(n) ¢ W,

In this proof, all coding of N* by elements of N will be done implicitly. The
requirements are ordered as usual: R, has higher priority than R. iff e < ¢'.
We maintain a list n. of guards to keep track of which part of f; must remain
unchanged to satisfy a requirement of lower priority than e.

Stage s=0: fy =, n. = 0 for all e.

Stage s+1: Suppose f, is defined. Let m = (e, t) be the least code of a pair
(e, ty with R, not yet satisfied and

Is P ne = {fs(0), ..., fs(ne) — 1) S o € W, (6.7)

Set for1 = 0x(pc(0)), ne = |o|+1, ne = n, for ¢’ = e. The requirement
R, is now considered satisfied, while R, are injured for all ¢’ > e.

Observe that f, gets extended infinitely often, since given fs, n. = ne for
all ¢ > e, we always have f, € W; where ¢; is the identity function with an
arbitrary large index i > e, satisfying (6.7). Furthermore, any requirement
can only be injured by those with lower priority. Thus we have

Vn Vs >1 fin)= fi(n)

Finally, put
f = lim f s
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Now we prove that for each e, R, is satisfied. So suppose that ¢, is a tree
and R, are satisfied for each d < e. Let s be the last stage when R, can
get injured, so that {R;}4-. are satisfied from s on. If R, is not satisfied,
then f(n) € W, for all n. So let t be least for which f(n) € W., with
n > |fs]. Now (6.7) is satisfied by (e,t), and at some stage s’ > s, (e,t)
becomes the smallest pair with this property. At this point fy is defined to

— —

be f(n) = {(pc(f(n))) and remains (uninjured) with this initial segment from

—

now on. But now if f(n + 1) € W,, then ¢, is not a tree, for it violates

— —

the second clause of Definition 52. Specifically, p.(f(n)) € ¢.(f(n)), while

— —

f(n) = {pe(f(n))) € dom(ype) = We.

We conclude that R, is indeed satisfied for every e. As a corollary, we get

that f(n) is not an infinite path in W, for any c.e. tree p., being what was
required to show. O

Let us reflect on what we have gathered so far. For any strictly monotone
/N — N with f(0) = 0 we have a sequence of terms (F,,) — the Devil’s
tunnel of f — such that AY/(F},) is never a singleton, and moreover has
size two if Af is not amenable. We have also shown that non-amenable
functions exist. Since f can be recovered from Af via the recurrence f(0) = 0,
f(n+1) = f(n)+ Af(n), it follows that there exists an f with the Devil’s
tunnel having range of size 2.

In light of observations of section 6.3, we could attempt to use these facts
to disprove the range property for H as follows. First, we define a term
= = Ax.M in which the variable x gets pushed to infinity during the growth
of BT(Zz) and every surviving trace of = gets an infinite applicative context.
Now, if we can arrange it such that the only trace of x in = which does not
get Qd gets the Devil’s tunnel of some f with Af not amenable, then the
range of = will be of size 2. Indeed, in order to disprove the range property,
it suffices to carry out the construction of the previous proposition inside a
A-term.

However, although the priority argument above is effective, the con-
structed f is computable only in the limit. In fact, f cannot be computable
by Corollary 48. This problem can be circumvented by using equality of the
A-theory H. Instead of defining a single trace deterministically, we make a
branch at every step in the construction when f is extended. In the first
case, we assume that the extension is correct — that it will not be injured
by any later extensions. In the second case, we assume the very opposite,
and wait for some later stage to injure the currently suggested extension.
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Now, if the extension is final, meaning it will not be injured again, then the
second choice will be stuck in an unbounded search, and hence will become
unsolvable. We say that the trace gets {2d. Note that this immediately makes
all accumulated information, including the argument variable, disappear from
the branch.

However, if the extension is wrong (is not a part of the final f), then the
first choice will be false. Since it is imperative that there is only one trace of
r, we must ensure that it will be deleted from the first branch in this case.
To do this, we have to check, at every iteration of the loop, that the initial
segment of f we have accumulated so far is the correct one. If we ever find
that an extension injures our current initial segment, we must intentionally
force the current branch to become unsolvable. In other words, our process
must €2 itself.

The next proposition formalizes this final step of the construction. Its
proof might appear very technical, but in reality it is little more than a
direct transcription of the previous priority construction into a lambda term,
with the provisions noted above.

Proposition 56. The range property fails for the \-theory H.

Proof. We adapt the previous construction to A.

As is known, all finite subsets, functions, and increasing sequences in N
can be coded bijectively by elements of N. Thus for A, B < N finite sets,
F,G < N x N finite functions, and o, 7 € N* strictly monotone, we will write
H#HA #B,#F, #G, #0,#7, etc. to denote the elements of N corresponding
to the codes of A, B, f,g,0,7, etc. The following A-term X performs the
induction step in (6.7). Its definition uses a fixed-point operator (many
times).

([ m = e, t, #0)
e¢ Ao 2 F(k),#0ecW.,
k :=max{p(i)|i <e,|p[}
Ti=p lex{|o]),
7(1) =k for [p| <i<e

[ 1= (0 * (pe(#0)))

| Xcgrcgacy,(STen) otherwise

C ]
XCpCp ACH)Crn = 3 #n,#(Au{e}) #1)

Given fs, A, p, where p = (n.) 4 and A = {e | R, has been satisfied},

e<max
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the term Xcyr, cuacy,cpn checks if m codes a triple (e, t, o) satisfying (6.7).
If so, it returns fs,1 and the next (n.), else it continues the search for m.
In what follows we’ll also need the following terms:

W . C#(#F,a,r) G $ F
CHGC#Fary = 0% .
cuc(Xeppeacrco) otherwise
v § = C40
Vas =3 V(@UQY™)t s = cuger = Car
Q otherwise

For F'C G sequences, we write G\ F' for the sequence (G(|F)...G(|G|—1)).
Now take 7;Cuin, nonsy = Cn; With mQ =4 Q. Put
Mzis = (Afar.Nzifar(Xfar0))(ms)(mes)(m3s)

1= C#Fﬂf = C#Fsapi - Fs
G :=F\F;,y = Vacyc

Q otherwise

Nai farn - Az.z(Myfn)(Mzi(W fn)) {

The operation of M can be intuitively described as follows. Given an
initial segment F; and a triple {f,a,o) with f = #F, crash if Fy is not an
extension of F;. If it is, split into two processes: one where x is applied to
the new part of F' — which is what F§ added over F; — digging further the
Devil’s tunnel, another where Fj is assumed to be a false extension and the
search for an alternative one is performed. Note that if F was indeed the
right trace, then the second process is gonna get {2d. Conversely, if X at
any point t beyond s yields an F; which is not consistent with Fj, then all
the children of the first process will get €2d, because at stage t the condition
F; € Fj is not going to hold for them anymore and they will crash. Yet if F; is
indeed a part of the final F', then as per the proof of the previous proposition,
we know that it will be extended. In this case one of the processes will always
have a solvable child.

We define
E = Ar. Mzcyoycaupo0

As BT(Z) grows, the occurrences of x in = have the structure of a binary
tree, with exactly one path being extended infinitely often. Along this path,
the argument = gets the Devil’s tunnel of a function f, with Af not amenable
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by construction. Therefore there are exactly two elements in Range(Z) mod-
ulo the theory identifying all unsolvables: =€) and =I.
We conclude that = is a counterexample to the range property in H. [

The proof above, while falsifying the conjecture, is quite indirect. First
of all, it makes use of Proposition 54, which translates A-calculus properties
of (F,) into recursion-theoretic properties of Af. The main construction
again uses an argument from recursion theory. Although the underlying idea
is rather simple, the machinery supporting the proof is rather bloated. To
improve this situation, we tried to look for a more direct path to falsifying
the conjecture. The next section presents this improved result.

6.5 A simplified counterexample

Now we simplify the previous construction, such that it does not make use
of Proposition 54. We briefly recall the notation.

Notation. For M € A, #M is the Godel number of M, and "M" = cyy is
the quote of M. Let E be an enumerator: a A-term satisfying E'M" = M for
each M. For o € 2*, let |o| be the length of o, #0 = 27l —1 4 Diiclo] o(1)2¢,
and ‘o' = cy,. We write M ¥ if the head reduction of M terminates after at

most k steps. If such a k exists, we may write M|, otherwise we write M1.
If M|, then phnf(M) denotes the principal head normal form of M. Finally,

L = JL+m phnf() = Aao..ziyPr--- P
. - ) M unsolvable

2. L, = Ec,, so that A’ = {L¢, Ly, ...}.

Definition 57. We begin by defining a family of A-terms {M7},cox with
FV(M?) < {z} by induction on the indices o:

MO =
Ma*(O) = M°I
oKD MU k= || M7 [z := Ly, ]|
Q M? [z := Ly, | unsolvable

For N € A’ let Mg = M?[z := NJ|. Note that M3 = Q. Finally, let
My denote Mgm.
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Definition 58. The above is rendered effective by going over to the codes;
let F' be the term which A-defines the following pcf f:

fF#O) = #I
f(#(0+0))) = #I2.Lyyq)2l

. _V#N L) 2T k= ([ L0y Lo
[ ) = {T L f(#0)L|s unsolvable

From now on, the equality between terms is always taking place in H.
With the exception of {M?}, we will only consider closed terms.

Proposition 59. The following properties are easily seen through induction
ono:

1. M) = M= 2@, with Q; € {Q,1,U,U2,...} for all i.
2. M°Y, o7 — M™1.
8. M7 =E(F'o")x, M = Lio)Lis) = E(F'0")(Ec|y|).

Definition 60. The following terms are defined using a fixed-point combi-
nator. The references to M7 are handled by looking at its code F''¢’', as per
Proposition 59.c.

ot Az 2URQF | = | MY |l
Q Mh" unsolvable

T Q Mo o‘rEI 70y = 0. M|,
I otherwise

X'o'r =T0'[X"0+{0)(2I), X o=(1)(S0'x)]

= = X' (=, \z.Xcox)
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Theorem 61. |[Range™(Z)| = 2.
Proof. We begin by introducing some terminology. Let o € 2*.

o is doomed <= 3I7+(0)< 0o M|
0 is healthy <= o is not doomed and M? is solvable

The following two observations are immediate:

o is healthy, 7 €0 = 7 is healthy
o is healthy, M7| == o «(l)is healthy

Step 1. Assume o is healthy. Then
o = (1) is healthy <= o »{0) is doomed

Indeed, o « (1) is healthy = M| = ¢ « {0) is doomed.

Conversely, suppose that o « (0) is doomed, so let 7 {(0) < o = (0) be
such that M |. Since o is healthy, 7+ {0) & 0. Thus 7 = ¢ and M7 |.
By the second observation, o = (1) is healthy.

Step 2. For each n € N, there exists a unique o of length n which is healthy:.

Base case: () is healthy since M = z is solvable and —37 {0 < {).
Furthermore, () is the only sequence of length 0.

Induction: Suppose o is the unique healthy o with |o| = n. By the
first observation, if 7 is healthy with |7| = n+1, then 7 2 . Thus
we are to show that o = (i) is healthy for exactly one i € {0, 1}.
If o = (1) is healthy, then by the Step 1 o = (0) isn’t.
So suppose o = (1) is not healthy. Combining the inductive hy-
pothesis with the second observation, we see that this can only
happen when M7T. Thus M]| holds neither for 7 = o, nor (once
again by the inductive hypothesis) for 7 = (0) € 0. Hence o = (0)
is not doomed and moreover is healthy, for M?| — M0

For o € BT(N), let N, denote the subterm of N at . Note that

aeBT(X'0") = ae2”
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Step 3. Let 7€ BT(X ¢"). We have
(X0 M), = X0« 7' M
In particular, (22), = (Xcor), = (X O'MO), = X7'M".
We proceed by induction on 7.
Base case: (X'0'M7)¢y = X"0"M°.
Induction: Suppose Vo. (X'0'M?), = X 0«7 M7*".
If T'0' = Q, then T"p' = Q for any p 2 o, so
XM =Q = X'0" M = (X0 M) 3.
But if T"¢'|, then
X'o'M? = [X0+(0)'(M°I),X o={1)(So"'M?)]
= [XTo#0)'M7*P X0« (1) M*D]
= A2.2(X 7o« (0 M7*O) (X o« (1) M7*D)
Therefore,
(XM )y = (X' 5 (i MTO),
= X'0#(i)x 7 MO
Step 4. X'0'M? =4 X"0'Q unless o is healthy.
If o isn’t healthy, then either it’s doomed or M7 is unsolvable. In the
latter case, T'c" = €, so certainly X 'o'M = X¢'Q = Q.
Suppose o is doomed. Let n be such that M]|" for some 7 = (0) < 0.
Then for any p 2 o with |p| = n we have T"p" = Q, so by Step 3
(X" M), = X' M? = Q)

Thus the Bohm tree of X o' M? has depth at most n — |o|, and, being
finite, is the SQ-nf of X '¢'M?. Since x does not occur on the tree,
applying the substitution [z:=Q] leaves the SQ-nf unchanged. At the
same time, X o' M7[z := Q] = X'0'Mg = X ¢'Q). We conclude that
the two terms are H-equal, being what was required to show.

For n € N, let 0, be the healthy o with |o| = n. We have seen that

op & 01 < -
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Step 5. EN # =ZQ < Vn M:"|.
Suppose N is such that M3 = Q) for some n. By Step 3 we have

(EN),. = (Za)g, [ := N] = X'0," M3 = X'0,"Q = (2Q),

But by Step 4, (EN), = X'p'Q = (2Q), for all remaining p of length
n. Thus EN = ZQ (by first unfolding their Bohm trees up to depth n,
and then converting the corresponding subterms at that depth).

(At this point, the reader is invited to the following refreshment: sup-

pose A =Y(Afxz.z(f(2I)z)); why does one have AT #4 AQ?)

Conversely, suppose =N = =(). By the Church-Rosser theorem for H,
let C' be the common [€)-reduct of these. By Step 3, the Bohm tree
of C' has solvable subterms at o,, for each n. So let n be maximal with
position ¢, fully developed in C' — that is, n is the greatest number
with no redexes along o, occurring in the syntax tree of C. We then
have a subterm D at position o, in C' with D = X o,,'(M7"). Reducing
D at the root until the appearance of the last head redex yields a term
D' = AB, with X'0,," - A and M3» — B « MJ" = Q. (This is
ensured by using reducing fixed point combinators such as © in the
definition of X.) Now B, being a reduct of an unsolvable term, must
itself be unsolvable. At the same time, M}" reduces to B, so it cannot
be solvable either. We conclude that M3t for some n.

Step 6. =N # =() — =N = =1.

Suppose Vn MyJ"|. Let N = L.: cis the code of N. Since Mh”c = M7*|,
we know that o. = (0) is doomed. Hence 0., is 0. = (1), because it’s
healthy. Let Mh"c = M3 = \xg..vp.x; Py - - - Py, Then

Oct+1 __ oerym+lOy~m+l
M = MEumta

= ()\ZL‘Q...I‘Z.ZL'Z‘Pl Tt Pm)Uzi§Q~m+l

Since My ™|, i must be 0, for otherwise x; would be bound to 2. Hence

MX;+1 = ()\ZL‘Q...ZL‘[.ZL‘QPl T Pm)Uziégwm_H

= ()\IL‘l...ZL'l.Um_HPl T Pm)QNm—H

m+l
= Ui
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Here M3+ again becomes Q unless m < I. Set r = —m, and we get
MJU\;:+1 — U:

Recall that M™*® | = M™® = M7Q,---Q; and j > 1. By way of
this observation, let d € {c,...,c + r} be least with the property that
Mo+t = Mo%+1 Q)1 ---Qy and t = r. Then, unless d = cand t =r =0,
we have M7 = M7+1(); --- Q) for some s < r.

Suppose t > r. Then ¢ — s > 2, and hence 04,1 = 04 = (1), for
Mt = Mo4Q, 1 Quia - @y # M1 = M7
But then Mo+ = M2aU¥Q~* and hence
M = MG QU0
=UQ, - QU ---Q
=0

since s < r < t, contradicting the fact that M+ |.

So t = r — this also covers the case when d = ¢. Then
Mjo\'fd+1 — MifcﬂQl . 'Qt — U:Ql . 'Qr — I

We deduce that My = M7*"'. By Step 3 it follows that ZN and
=I have the same subterm at position o4,1. Yet by Step 4, they also
agree on all other positions of length d 4+ 1. Indeed, the two terms are
‘H-equal.

Step 7. =1 # =Q.

By routine induction on n one easily verifies that Vn.M7" = I.
This completes the proof of the theorem. O
Corollary 62. The range property fails for Hn and Hw.

Proof. The same term = that worked for H also works for ‘Hn and Hw.
That the range of = in Hn is still a doubleton is immediate because
the Church—Rosser theorem also holds for fnQ-reduction (Barendregt [1984,
15.2.15.ii]).
For the Hw case, we augment our argument with (Barendregt [1984,
17.2.17]) to conclude that also =T #4,, Z). O
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Remark 63. It is not difficult to generalize this construction to define terms
whose range has size n for arbitrary n. The easiest approach digs n tunnels
using =, but it is also possible to have one tunnel with n — 1 survivors.

If the side condition in the definition of T"¢" is changed to M[l"";é I,
then one gets a term with doubleton range in which the survivable traces
form a perfect set of measure zero.

6.6 Possible shapes of terms with finite range

In this section, we prove that, under a very plausible hypothesis, any coun-
terexample to the range property must necessarily possess some of the key
features of =.

We call this hypothesis “The Scope Lemma.” Although its status might
make the name “The Scope Conjecture” more appropriate, we are so con-
vinced of its validity that we adopt the more euphonic Scope Lemma.

Recall that a trace of a subterm (N, 7) of F' is a sequence of descendants
of 7 under the Gross—Knuth sequence (F,,) of F.

Conjecture 64 (The Scope Lemma). Let 11 be a mazimal, imperishable
trace of x in Fx. (Here x is fresh for F.) If F Xy =y FX;, then for some
n, A[Xo] = A[X1], where A[ | is the applicative context of (z,m,) in F,.

Motivation. Intuitively, the proposition seems rather obvious.

If F Xy and F'X; are convertible, then their reductions to a common term
induce two reductions of F'z; the descendants of = in these reductions should
acquire scopes that coincide under substitutions [z := X;| unless they are
eliminated by 2-reduction. Since II is imperishable, no (2-redexes exist above
the scope A’[x] of any ancestor of (x,7,). Hence A[X,] and A[X;] should
be convertible. O

The following is an attempt to prove the Scope Lemma along the lines
above. We have included it in case the reader is interested to see where the
approach breaks down.

Partial proof. Suppose that F' Xy =5 FX;. By the Church-Rosser theorem
for fQ-reduction, there is a term Z such that F'X; —zq Z for i € {0,1}. By
postponement of Q-reduction, (Barendregt [1984, 15.2.7]) there exist Ny, Ny
such that

FX; —»3 N, —q 2
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Now we apply Barendregt’s Lemma. This is a classic result which was
only recently introduced into the literature by de Vrijer [2007]. We use the
formulation in (Barendregt [1984, 14.4.8.ii]), which is very convenient in this
particular context.

By part (ii) of that exercise, there exists a multihole context Co[ ..., ]

and a term M, = C’O[xl_D)(l], . ,:ETD)?W)] such that the reduction F' X, — Ny
can be lifted to

0
FSU%')M(), NOECO[ ?7..., 9”0], Xoﬁjﬂ')Qg
Similarly, we have M; = Cl[azﬁi,...,xﬁjm] with Ny = C1[Q1,...,Q,,. ],

XITD); —» Q}, and Fz — M;. Furthermore, the contexts C[...] lead to the
outermost occurrences of x.

By the cofinality of the sequence (F},), there is an ng such that M; — F,,,
for both 7. Since II is maximal, the subterm x at position 7,, in F},, must

be a descendant of one of its occurrences within x?; in C’i[xﬁll, .. (as
they are precisely those occurrences of x in M; which are not commanded
by any others.) Since II is imperishable, this occurrence cannot be inside an
unsolvable, either.

Now, plugging X; into C;[...] yields, after reduction that takes place
inside the holes, terms Ny and N; which are alpha-equivalent up to €2-
reduction. This strongly suggests that the contexts Cy[...]| are the same,
outside their holes and 2 redexes. Toward this end, we now precisely ana-
lyze the effects of Q2-reduction from N; to Z.

Let ©Q(X) denote the Q-normal form of a lambda term X. One possi-
ble reduction from X to Q(X) consists of contracting all S-maximal (hence
disjoint) -redexes. (See Barendregt [1984, 15.2.10.ii] and the proof there.)

We have

ColQY, ..., &O]ENO 0 4

Cl[Q},---,Q}m] =N, —»q 2

and therefore Q(Ny) = Q(Z) = Q(NVy).
For a fixed i, let A be an occurrence of an Q-redex in NV; = (... ]. There
are three possibilities:

1. A is disjoint from every hole of C;[...]. In this case, A occurs in C;
itself and does not intersect with any Q;
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2. A strictly contains one or more holes of C;[...]. Contracting A then
makes these holes disappear. If this ()-redex is already present in

C’i[a:Tﬁl, ...], its contraction decreases the number of outermost oc-
currences of x in M.

3. A occurs in one of the holes. That is, A is a subterm of Q;, occurring

in the jth hole of Ci[...].

Now, for i € {0,1}, let o; be the reduction from N; to Q(V;) that contracts
all maximal ()-redexes in the above order. Write

a b c
T

o, o, ag
N; —=q N —q N/ —q Q(7)
where 0; = 0¢ + 0 + o¢. Then we have

1. N/ = CJ[Q1,...,QL, ], since the redexes contracted in ¢f lie outside
the holes of Cy[...]. We can write this using a more explicit notation
of multihole contexts:

Gl Lol T > CL Tl T

In particular,

The term to the right of the arrow we denote as M.

2. N/ =C[Q5,, ..., ;m(]. It might seem that (ji, ..., jm,) should be the
subsequence of (1,...,m;) that lists all the holes of C![...] not con-
tained inside an €2-redex of N/. However, then we would not necessarily
have that

. 2B N

Jmi

. ; af —1
M, =Cl[«P,,...,2 P, > C'[« P,

17"

because a subterm containing xf’):m may only become unsolvable after
x is instantiated by X;. Yet this is only possible if the head reduction
of this subterm depends on x — that is, if its principal head normal
form contains = as the head variable. Therefore we must reduce C!
until this happens.
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In fact, we will simply assume this has already been done before step
a: there are finitely many subcontexts of Cy[. .. ] whose head reduction
brings one of the holes into the head position (and then this hole com-
mands the other holes of the subcontext, making the corresponding
occurrences of z irrelevant). To preserve confluence at Z, the corre-
sponding reductions can be performed in C_;...] as well.

In summary, we have

. b
1

C’Z'[xﬁzl, P % C{'[xf’);, oz P

3. N/ 5 Q(Z), for i € {0,1}. As all reductions of of take place inside
the context CY[...], this implies that C{[...] = CY[...]. That is, CJ
and C{ are the same context. Then mg = m), and Q) =q Q] for

1 < k < mf. Since Q) = XZTD);]C with [ ]Tﬁzk the applicative context
of the k’th hole of C[ |, we have that

0 1
XO lo =X1 A

Clearly, the descendants of both sides of the last equation under the reduc-
tions to F, [z := X;] are equal as well, being what was required to show. [

We thank Roel de Vrijer for popularizing Barendregt Lemma in Henk’s
festschrift and providing the reference to the exercise.

Unfortunately, the proof above has a gap: it is not at all immediate why
the two contexts at the end (in part ¢) should be the same. This inference
would be validated by the following.

Conjecture 65. Suppose that x ¢ F'. Then
Fx=F(C|z]), zey Fr = C(lz]=2

The conjecture asserts that F' cannot recursively put a non-trivial context
around its argument while keeping things solvable. Note that the conjecture
fails for Ag since F' = Y(Afz.fC[z]) has x €3 Fx unless = ¢35 C[z]. But
it seems that the application of the fixpoint combinator is necessary in a
manner that makes I’ unsolvable.

We believe the conjecture can be established by the method of A-clocks, a
new proof technique introduced by Endrullis et al. [2010]. Still, the conjecture
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appears to be considerably deeper than the Scope Lemma it is supposed to
prove!

Assumption. The Scope Lemma is valid.

The assumption above is to be implicitly imputed as a hypothesis to all
of the results proved in the remainder of this section.

The first is a rigorous demonstration of Barendregt’s observations quoted
earlier. Without the assumption — even without the last conjecture — we
do not immediately see the truth of the statement

If some trace of x towards infinity occurs in a context xP; ... P,
with n maximal, then the range of F' is infinite by considering
F(Azy...zp.cp).

With the Scope Lemma, the statement can be proved as follows.

Proposition 66. Let F' be given. Suppose there exists an imperishable, max-
imal trace I of x in Fx such that for some ng, m the the scope of (x,m,) has
the form x Py ... P, for all n = ny. Then the range of F' is infinite.

Proof. Recall that U" = Azg---x,.2;. Let Xy = Uj'cy, the m-ary constant
function with value c;. Suppose that for some k, k' we l@)ve FX, =FXy. By
the Scope Lemma, there is an n; such that Xk@) = Xp @, where xQq ... Q) is

the scope of (x,m,,). Hence X, k@)@” =X k/@)@” for every descendant (z, )
of (x, m,,) with scope x@)@”, for n=mn. In particular, ij_D) = Xkrf’) (where
X;P; ... P are descendants of X;(Q) at m,, for n = ng + ny). So we have

Xk?:Xk’?
UgLCk_Pl...Pm=U6an/P1...Pm

Cr = Cps
Hence k = k'. That is, k # k' = F X, # FX,. O

Remark 67. The proposition above does not hold for II which are not max-
imal. For an example, take F = \z.2%(2(2Q)), where Nz = (N (2N)).
Although the applicative context of the inner x is always finite, it is easy to
see that F'X = FQ for all X.

Definition 68. For F' € A, let x be fresh (z ¢ F') and let .# denote the set
of maximal, imperishable traces of x in Fx.
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e The trace tree of F is the set of finite sequences of positions which are
initial segments of elements of .7

TT(F) = (o, ... 70y | e )

e The trace space of F is the topological space TS(F) = (., O) where
O is generated by taking as basis the cylinder sets

¢, = (1] p=T1)
for each p e TT(F).

e For II € .#, the tunnel at II is the sequence of lambda terms (T,,)
defined by:
T, = Pn

where P, . .. P, is the first applicative context of x in II that has more
than n arguments. We write 7 (II) for the tunnel at II.

By definition, the trace space is the set of infinite paths through the trace
tree, topologized as usual. It is a subspace of the larger space of all traces.

Proposition 69. Given any trace 11, it is effective to compute the tunnel
(T),) at I1. (That is, T (I1) is Turing-reducible to I1.)

Proof. Given n, we find the least m such that the applicative context C' [:m_D)]
of x at m,, has at least n elements, and return P,. By definition, this is the
n’th element of the tunnel (7},) at TI. (If IT is imperishable, then the search
is guaranteed to terminate, but generally we may not know whether or not
n € dom(7 (II)).)

Since IT is a sequence of positions in the Gross—Knuth sequence (M,,)
of M, the applicative context at m, can be computed effectively by fully
developing the redexes n times and looking at the syntax of M,,. O

Proposition 70. The trace space TS(F') is compact.

Proof. We will show that the set . is closed in the space of all traces of x
in Fz, and that the latter is compact.

In the manner of Definition 68, let TS*(F') be the set of all traces IT of x,
let TT*(F) be the set {(mq, ..., m,) | 1 € TS*(F)}, and topologize TS*(F') as
the set of infinite paths through TT*(F'). (The basic opens are {II | IT 2 p},
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with p e TT*(F).) Clearly, the topology on TS(F') is the topology it inherits
as a subspace of TS*(F).

Since the space of paths through a finitely branching tree is known to be
compact (by the same argument as for the Cantor space), it sufficies to show
that TT*(F) is finitely branching. Toward that end, let p € TT*(F), and let
n be the length of p.

If n = 0, then the only successor of p is the singleton {(my), where my is
the context C[ | = F[ |]. (Since Clx] = Fz and z is fresh for F.)

If n = m+1, and I is a trace which begins with p, then 7, is a descendant
of m,, under the full development from F;, to F),. Since the developments
are finite in length and in number, the number of descendants of 7, in F), is
finite as well. Hence there are finitely many « such that p = () € TT*(F).

So TS*(F) is compact. Now we show that .# is closed in TS*(F).

If IT is not imperishable, then 7, is inside an unsolvable term for some n,
and none of the traces through 7, are imperishable. So the complement of
imperishable traces is open.

If IT is not maximal, then m, is commanded by 7/, for some other trace II’,
and again it follows that no trace through {(m, ..., m,) is a maximal trace.
So the complement of maximal traces is open.

Hence the set of imperishable traces, the set of maximal traces, and their
intersection .# are all compact, being closed subsets of a compact space. [

Remark 71. The trace tree is related to two other trees which are important
for the analysis of the behavior of a lambda term F'. The first is the Bohm tree
of F', the relationship with which consists in synchronizing the Gross—Knuth
reduction with the growth of BT(F') and factoring m, through positions in
the Bohm tree. The second is the tree of applicative contexts of maximal
traces of x in Fx. The tunnels associated to traces are infinite paths through
this “scope tree”.

We will need the following elementary fact.

Proposition 72. Let E be an equivalence relation on a set X. If the set

{[x]r | x € X} is finite, then there are finitely many equivalence relations
E' < p(X x X) with E < E'.

Proof. If E' is C-above F, then some equivalence classes of F are merged in
E’. If the set of these classes is finite, then only finitely many mergers are
possible. O
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Definition 73. Let (M, ) = My, M, ... be a sequence of A-terms.
o XM =XMy--M,_,
e For a A\-theory 7, X ~’<7Mn> Yif Ik XM =5 v,
o (M,) is survivable if 3IX € A° X 76?an> Q. We say X survives (M,).
e A trace Il is survivable if the tunnel at II is survivable.

Definition 74. Let £ < p(A° x A%) be the set of equivalences relations on
A°. Fix a A-theory .7 and a term F € A°.

e The input stream equivalence operator
ISE: (N—>A) > €&

associates to each sequence of terms (M,,) an equivalence on A° accord-
ing to the rule
7
M,y +— ~(MR)

e The map T : .# — & is defined by

T =ISEoT

e The map v: TT(F) — £ is defined by

vlp) = () (1

1=p

Remark 75. T(II) is the value of the stream equivalence operator at the
tunnel of IT. v(p) is the greatest lower bound of {Y(IT) | IT 2 p} with respect
to the inclusion order.

Proposition 76. v is monotone.
Proof. 0 €7 = Co 2Cr = [yee, YII) S e, YD) = v(0) < v(7). O
Proposition 77. For any pe TT(F),

FM = FN = (M, N) € v(p)
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Proof. Suppose that FM = FN, and let (T, T1,...) be the tunnel at some
trace IT 2 p. By the Scope Lemma, M(T,)™* = N(T,)™" for large k. Hence
M~y N. Since II 2 p was arbitrary, M ~,,) N. OJ

The following theorem was independently discovered by David and Nour
[2010].

Theorem 78. Suppose that TT(F) has a computable infinite path leading
to a survivable tunnel consisting of closed terms. Then the range of F is
infinite.

Proof. If 11 is computable, then so is T (II) (Proposition 69). By Corollary
48, Y(II) is either trivial or partitions A® into infinitely many classes. Since
IT is survivable, it cannot be the former. Then the set of v({))-classes is
infinite as well, and by Proposition 77 so is the image of F'. U

Corollary 79. Suppose that Fx has only one trace of x, and the tunnel at
this trace consists of closed terms. Then the range of I' is either infinite or
s a singleton.

Proof. If Fx has only one trace II, then it can be computed by tracking
the descendants of x under the Gross—Knuth reduction, which is effective
(Barendregt [1984]). If some descendant of x occurs inside an unsolvable
subterm, then x ¢ Fz, and thus F' is a constant map. This is also the
case if (X,Q) € Y(II) for all X € A°. However, if IT is both imperishable
and survivable, then the previous corollary applies, and the range of F' is
infinite. O

Remark 80. The corollary fails if we merely require that there is a unique
trace which is survivable, or imperishable. Indeed, our counterexample con-
tains only one imperishable trace. That is, the presence of traces which
eventually come under an unsolvable are enough to render the path to the
survivable tunnel non-computable.

Definition 81. A position p € TT(F) is principal if there exists a trace
IT 2 p with v(p) = T(II). In this case, we say that Il is a generator for p.

Proposition 82. Suppose that Range™ (F) is finite. Then every trace II €
TS(F) is a generator of a principal node.
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Proof. Let I1 = (mg, 71, ...) be given. We're to show that there exists a p < 11
such that v(p) = T(II).
For any n, put o, = {7, 71, ..., Th_1). The sequence (o, ) is monotone:

HO=00S01S-- S0 S
By Proposition 76, so is the corresponding sequence in the image of v:
U(OO) - 'U(O'l) c ... C 'U(o‘n) C ..

But the range of F is finite. By Proposition 77, v(c) has finitely many
equivalence classes for every o € TT(F). In particular, v({)) induces a fi-
nite partition of A°. By Proposition 72, there are finitely many equivalence
relations E with v(og) € E. Hence the chain above becomes constant after
some point on. That is, there exists some ng such that v(o,) = v(o,,) for
all n = ny. We claim that p = 0, is generated by II.

That v(p) < T(II) is immediate.

For the reverse inclusion, suppose that (M, N) € T(IT). Then MTy...T;=
NTy...T, for some t. Let m > ng be such that the applicative context
of z at m,, 1 consists of more than ¢ arguments (such an m exists if II is
maximal, imperishable). Then for any II' 2 ¢,,, M ~7qry N as well. That

is, (M,N) e ({Y(Il') | I' 2 0,,}. Hence (M, N) € v(0,,) = v(0y,)- O
Corollary 83. The set of survivable traces is closed, hence compact.

Proof. Let II be a trace which is not survivable. Then T(IT) = A% x A°, the
trivial equivalence relation. By Proposition 82 there is a p < II with v(p)
trivial as well. That is, M ~gqry Q for all II' 2 p and M € A°.

So any trace which is not survivable is contained in an open neighbor-
hood of such traces. Hence the set of non-survivable traces is open. Its
complement, the set of survivable traces, is closed. O

Remark 84. The proposition fails for general F'. Consider, for instance,
the term YO\ fa.[f(2Q), 22x]), where 2Nz = (2N (2N)). That the trace with
tunnel (€2, ...) is a limit point of survivable traces allows us to conclude,
from what has already been established, that this term has infinite range. It
is a refreshing exercise to see this through. (Although the general theorems
of this section depend on the truth of the Scope Lemma, particular examples
such as this one can always be verified manually.)
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Combining the facts above, we get a structure theorem for terms with
finite range in H.

Theorem 85. Suppose that F' has finite range in H. Then there is a context
with k holes C| |1...[ |k such that F' = Xx.C|z]...[z] and for each i, ()
is principal in C[Qy ... [Qi—1[2][Q)iz1 - - - [Q]%-

Proof. For IT a survivable tunnel in TS(F'), let py; be the principal node which
IT passes through (via Proposition 82). Since the set of survivable tunnels is
compact by the corollary above, the collection {pr; | IT is survivable} has a
finite subcollection py, ..., p,, that covers all survivable tunnels. This gives
us what we are looking for.

Let [; = |p:| — 1, and let | = max{ly,...,l,}. For each i, the subterm x

occurring at position p;(l;) in Fj, has finitely many descendants 7, 1, ..., T n,
in F; which are still maximal. Let C[...] be the context obtained from F;
by placing holes at positions 71 1, ..., T n, T21, -3 T3 15 oy Ty - - - s T -

Write £ = ng + -+ 4+ n,,; then for for 1 < j < k, () is principal in
ClQy ... [x];. .. [Q]k, because all its survivable traces pass through the posi-
tion m; ;7, which corresponds with the jth hole of C[...] and is a descendant
of p;, while the latter node is principal. Also, Fz — F, = C[z]...[x]. O

The point of Theorem 85 is that it suffices to study tunnels of traces
which are generators.
We write M & N if for any C[ |:

C[M] solvable = C[N] solvable

Trivially, M =y« N <= M E N and N E M.

Proposition 86. Suppose that 11 is a generator for p and has a survivable
tunnel (T,,). Let k be the length of the applicative context of x at . Then
for any survivable II'" 2 p with (T)\) = T (II') and any n = k we have

T, T, closed= T, =T,

Proof. Let IL II',{T,,),{T ), k be as above. Suppose that for some m > k one
has C[T,,] =w Q +4 C[T},]. If T,,,, T are closed, this is equivalent to

P T,P=3Q A TP =51

Let X € A” be a survivor of (T),): X 71y Q.
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Put Q = Mo ... tmtm PXT,... T Then

QTy... Ty = TwPXT,... T, =QXT =Q
QT,... T, =T. PXT,...T, = IXT = X(T'y"™"

Hence X ~¢p,y 2, but (X, Q) ¢ T(II'). This gives us a contradiction, because
T(I) = v(p) = p=, T(P) = T(IT). .

If we want to replace E in the proposition above by actual H*-equality
(recall that H* is the theory of contextual equivalence), then we need a
stronger hypothesis.

Definition 87. A position p € TT(F) is monochrome if T(IT) = Y(IT') for
all II, IT" © p. That is, the input stream equivalence operator agrees on the
tunnels of all traces through p:

X~y YV = X ~ap Y
where (T,,),(T!) are the tunnels at I, II' and X,Y € A° are arbitrary.

Proposition 88. Suppose that p € TT(F) is monochrome and the applicative
context of x at p has length k. If I1 € C, has tunnel (1,,), then for all 1" € C,
with T(I1") = (T, and all n = k:

T, T closed =T, =y T,

nytn

Proof. Let p,I1,... be as above. If the equivalence relations induced by traces
through p are all equal, then v(p) = YT(II) = Y(IT'). Hence IT and II' are
both generators for p. In particular, the previous proposition applies to IT,IT’
in either order. Hence

T,, T, closed =T =T, AT, =T,
The right side is trivially equivalent to 7, =4« 7. O

The results of this section show that the Scope Lemma would go a long
way toward characterizing terms with finite range and their tunnels. How-
ever, it also opens up other issues, such as the behavior of tunnels which
might have free variables. Can any of the last results above be extended
beyond the closed setting?
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6.7 Open terms, open problems

In section 6.3 it was proved that any tunnel which has a partial computable
subtunnel consisting of fully solvable terms has infinitely many survivors.
This condition of full solvability is rather artificial — it was forced upon us
by our inability to deal with free variables. In order to have a full account
of survivability of input streams (which is necessary if we are to have a
full characterization of terms with finite range) we need to address the free
variable issue.

Given a sequence of_()open) terms (M,, ), we are interested in the structure
of terms X for which M [z := X stays solvable i.e. always has a head normal
foi)m. The only variables which could play a role in the head reduction of
xM = z{M;)"" under the substitution ¢ = ox = [z := X] are those which
occur on the Béhm tree of M, for some n. For y € BT(M,,), we have the
following possibilities:

e y is bound in M,,. Then y can in principle be instantiated by any term
which the abstraction binding y is applied to. This effectively gives X
control over y and its arguments, a fact we exploited in the case of fully
solvable terms.

e y is equal to . Then all occurrences of y in M, are bound by the
substitution oy, he_n)ce X only can control y if some arguments to y
are separable from M in the sense of Barendregt [1984] — which would
allow X to act differently at the root of XM and where y occurs.

e yis a free variable not equal to . Then y is unaffected by o, and, should
y ever make it to the head position in the reduction of X(M7)™™", it
would “freeze” this reduction, turning X{MZ)~"™ into y?(MZ‘:Ln s
for all m > n. If an arbitrary argument could be applied to y? before
y becomes the head variable, then A°/(M,,) would trivially be infinite.

This much seems obvious. In fact, if (M, ) is a tunnel inside a lambda
term, there is an additional complication with the third case, namely that
the free variable might actually be bound, not in M, but in an abstraction
above the scope of M — in a context strictly containing the trace to (M, ).
The consequences of this will be analyzed later in this section. It doesn’t
affect the conclusion that, for a free occurrence of y # =z, it is of utmost
importance to decide whether y can be “Bohmed out” to the head position.
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If any such y exists, then the survivability and the range questions would
have immediate positive answers.

However, the ability to Bohm out subterms of M,, is made complicated
by the second case. The usual technique is insufficient, because we can only
choose the substitution o, and cannot subsequently apply the result to any
“selector” terms. Yet if we have multiple occurrences of x on the path from
the root of zM to y, then the substitution must be carefully chosen to perform
the Bohming out simultaneously.

This brings us to an interesting computational problem in the pure lambda
calculus, namely the following

Problem. Given: aterm M =xM,...M,_1, and y # x a variable occurring
freely on the Bohm tree of M. Construct a A\-term X, with y ¢ FV(X), such
that M|z := X] = yN.

We think of y is being “Boéhmed out” by the substitution [z := X].
Again, the classic technique of Barendregt [1984] does not apply, because
there the substitution is followed by a vector of “selectors” which actually do
the Bohming out. Here we need the X to supply these vectors by itself. This
problem could arise in any situation where we want to perform a Bohm-out
action deep inside a term, and only have access to the head variable there;
our motivation with open tunnels is just an example.

The problem can be equivalently formulated in terms of positions: if
m € BT(M), find a substitution [z := X] such that the head reduction of
M|z := X] eventually brings 7 into the head position (so that the descendant
of m under the head reduction comes to the root).

Clearly, if 2 is a free variable of M that occurs somewhere along the path
7, then the problem has no solution unless z = z, so the only free variable
which can command the position we want to Bohm out is x.

On the other hand, if all variables occgrring along 7 are bound, _t)hen tge
problem has a trivial solution: X = A\d.a; P, where i = w(0) and M; P = yN.
(When M; is closed, the existence of P follows by the Bohm out theorem,
but by inspecting the proof it is manifest that we only need substitution for
the free variables along 7.)

The case that remains is that the path = leading to y € BT(M) passes
through one or more occurrences of x, in addition to the one at the root.
We are then to decide whether these occurrences can be instantiated by the
same term in a way that would allow y to come up to the top.
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Here we will state a conjecture that will fully characterize the set of
positions 7 that can be accessed via some substitution ox. Its statement
most closely resembles Separability Theorem of Coppo et al. [1978] and can
be viewed as an extension of that result. (In fact it is pretty obvious that
the conjecture must be true, but its proof appears to be very technical.)

Example 89. For each term M below, decide whether there is an X € AY
such that M|z := X]| = yN

xQ(zyQ) QI (x(xQIy)KQ)

xQ(zyQ)I xQ(2KQ(xIyQ))I

rI(zI(zy)) r(zQI) (zKQ(2IyQ)) Q2
zI(zQ(xy)) rIQ(Aw.z(wKQ)Q(z (wK)y2))
z(xQ(zy)K)QI rIQAw.z(wKQ)Q(z(wKN)yQ))

(e aQyDR)OQT [k, Q)Q([K, K] (z[K, Q] (2[K, K]Qy)2)0)

r(zQzyQDK)QI  2I(x(2Qy)QI)I

We encourage the reader to try some of these exercises before proceeding
to get a feel for the problem. The examples in the first column are easy;
those in the second column are harder, and the last one is the hardest.

With the conjecture that we state here, the reader would be able to solve
all these problems immediately. Furthermore, when a solution exists, she
would be able to quickly write the term X by inspecting the structure of M.

We will assume as known the notions of Bohm trees, head normal forms,
etc. If the introduction in the previous section does not suffice, the reader
should consult Barendregt [1984]. For ¢ € BT(M), M, is the subterm
of M at position 0. The Béhm rank of M is the number m — [, where
M = Axy...xp.yP; ... P,; the Bohm rank of M exists and is well-defined
whenever M is solvable. We write M ~, N if M, and N, have the same
head variable and the same Bohm rank. The head variable of M, is denoted
by y,(M). Finally, if o and 7 are strings and o < 7, then o\7 denotes the

string (o (|7|),o(|7| + 1),...,0(lo] = 1)).
Definition 90. In what follows, M € A and F < A.

1. An M-filtration is a sequence Fy 2 F; D --- such that Vido;e BT (M):
(YN eF: 0,€ BT(N)) A (Fiur = (N € Fy | N ~,, M})

The position o; is called the pore of the filtration at .
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2. M is distinct from F, written M | F, if there exists a finite M-filtration
.F()2"'2.anithfozfandfn=@.

3. M is separable from F, written M || F, if there are Ny --- Ny € A with

M
F

I
=

N
N =X VF e F

Proposition 91. For closed M, F:
M|F < M| F
Proof. By the methods of Coppo et al. [1978]. O
The definition below defines two concepts by mutual induction.
Definition 92. Let M € A(z) be given.

e v is x-accessible in M if the set {o € v | y,(M) = x} can be partitioned
as S U C such that

1. M is z-distinct from {M, | o € S}.

2. {v\o | 0 € C} forms a S-chain,

e M is z-distinct from F if there exists an M-filtration Fy 2 --- 2 F,
such that Fy = F, F, = &, and for each i the pore o; is x-accessible
in M and in N, for each N € F;.

Definition 93. A subterm N of M at position o is Béhmed out by an
instance p of M written o ¥~ M, if a descendant of (N, o) occurs in the root
position at some point in the head reduction sequence of M?”.

Conjecture 94. Let M € A(x) and v e BT(M).
Ip v M < v isz-accessible in M

In particular, if M || {M, | () # o € P}, then v can be Bohmed out.

The conjecture was stated for only one free variable; we briefly consider
the case when we have move variables. If we wished to simply “block” the
free variables from being used, we could replace them by L (by applying

—

the substitution y = ?2)), this will make all nodes passing through them
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unaccessible. Alternatively, the variables could be used to help Béhm out
the z (making more positions accessible), then they should be put into the
head position first. In all other cases, the interaction of the variables will be
left subject to how the characterization is to be used.

Assuming the conjecture, we can easily solve all of the problems in Ex-
ample 89. We illustrate the technique with the last one.

Example 95. Find a closed term X such that
rI(z(xQy)QD)I[z = X]| = yN
or prove that no such X exists.

Solution. The path © = (1,0, 1) to the unique occurrence of y passes through
3 head occurrences of z, let’s call them 7y, 7, ™. By the characterization
above, in order for X to exist we must at the very least be able to separate
m from the others, since (0,1) & (1,0,1). As the first argument of x at
is €2, the second argument of x at m; is €2, and at the root (at mg)  has only
three arguments in its scope, we see that any possible filtration must begin
with the third. That is,

X = Aabe.c. .. (6.8)

The scope of x at 7y can be n-expanded to yield A\z.zQyz. Because we have
control over the third argument of x at my, we can consider that position to
be effectively separated (when we get to m, we will simply instantiate z with
what is necessary to get y). But we still need to separate my from 7, because
their third argument is the same while 7(0) # 7(1). The only candidate is
the first argument, which is I at mg and Az. XQyz at me. By (6.8), the latter
[-reduces to A\z.z.... Because this has the same head variable as I, we can
only separate them by exploiting the difference in their Bohm rank, which is
zero for T and —n for XQy, where n is yet to be determined. Then the two
are separated by the context [ [U"(UZB)Q2~""'A. Thus we have

X = dabe.c(aU (U B)Q™ " A) - - -

In the case of 7wy, we want to pass control to w1, which is the second argument.
Hence A = b. In the case of 7, we want to pass control to my, which is the
first argument, and needs to be applied to some term C. Hence B = aC"

X = Aabe.c(aU (Ug (aC))Q2~" 1p) - - - (6.9)
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Now, C' needs to extract y when XQy is applied to it, yielding the term
XQyC = C(QUY---))---. Then the --- in (6.9) must include b, so that
XQyC = C(Q---)b. Now we can take C' = Uj, and obtain

X = Aabe.c(aU (Ug (aUp)) ™" 1b)b
Here the scope of ¢ has two arguments, so n = 2, and we finally get
X = Aabe.c(aUs (U2 (aK))Q)b (6.10)
Let’s verify that the term works as intended:

XI(X(XQy)QI)I = 1(1U5(U3(IK))QX (X Qy)Q1)) (X (X Qy)Q1)
=U3(- )X (XQ)QD)(X -+ )
= X(XQy)QI1(X--+)
= I(XQU3(UA(XK)Q)Q(X - )
—(XQyUS)(U%(XQyK))QQQ(X )

(- )y) (U5 (X QK))QQQ(X - )

U2 (X QR))QOQ(X - -)

XQyK) (X--)

K(Q--)y)Q(X---)

—yQ(X---) = yNoVi

AAAA

The solution (6.10) is not optimally hygienic: there is some junk following
y. Sometimes this junk is unavoidable, but in this case it can be completely
eliminated either by taking C' = U} or erasing the left b. O

We return to the discussion of the range property.

In section 6.3, we have seen that for a sequence of A-terms (M,,», A°/{M,,)
is infinite if (M, ) is computable and M, are closed. This left open the
question of what happens when M, has free variables. If the conjecture
above is Verlﬁed we would be able to pursue a more complete answer.

If y € FV(a:M )\{z} occurs at a position which is z-accessible, then the
range of (M, is infinite: given X = \d. alﬂ with My ... M, _ 1[$ = X| =
yN then xMy ... M,[x := Ada'. Xdcy] = yNcg. This is not immediate from
the conjecture, but we believe that it would follow from the proof. In any
case, it will be possible to extend the arity of X sufficiently far out that it
would not interfere with the Bohming out.
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If for every n, i < n, no free variable of M;, other than x, is accessible
in x My --- M,, then these variables cannot take part in the head reduction
of any term plugged in for x. This will make the theorems of Section 6.7
valid for open terms as well, modulo occurrences of . But the conjecture
also provides a way to deal with these occurrences. If it was established, it
would give us a tool to study input stream equivalence operators induced by
sequences consisting of open terms — which is an open problem.

Yet if the sequence in question comes from a trace of x in M, there
is an additional complication. Suppose (M, ) is the tunnel at II, and let
y € FV(M,). As noted before, y must be either bound, equal to z, or be a
free variable not equal to x. However, the last case might not be stable! The
variable y could be bound by a A occurring above the scope of x in II. If
this occurrence ever becomes part of a redex, then y could be instantiated
by another term sometime later in the Gross-Knuth sequence of M.

In this case, we really should have defined M, by the stable nodes in its
Bohm trees. That is, if a descendant of y at v is eventually instantiated by
a solvable term whose head variable is never bound again, then we should
call it the subterm of M, at position v. However, this is not guaranteed to
happen.

Given a trace II, call a subterm N of M ethereal if every descendant of
N has a head normal form with the head variable free in N but bound by
an abstraction contracted at some later point in II. Ethereal terms act a lot
like unsolvables: they cannot be given an applicative context which would
make them I. Perhaps this illustrates a deep flaw of H as a A-theory: that
Q-reduction is not sufficiently general for contexts under reduction, despite
the appearence.

If 7(II) has an ethereal subterm occurring at some z-accessible position
and II is imperishable, then the range of the term M is infinite, because such
terms act just like “fixed” free variables. The only exception is an ethereal
K®: an ethereal subterm that develops infinite A\-prefix while its head variable
stays free. If this subterm was accessible, it could consume the whole tunnel
without ever becoming unsolvable.

Statman [1993] has suggested that a possible counterexample to the range
property for H could be obtained by constructing solvable Plotkin terms.
This is not the approach we took: our counterexample does not send all
solvable terms to the same point. The existence of solvable Plotkin terms is
thus still an open question. We believe that if Conjecture 94 was established
this question could be almost settled negatively. The only mechanism which

132



would remain to be refuted is that of ethereal K-infinities.

However, if a counterexample could indeed be constructed that was based
on ethereal K*s, then it would show that the use of recursion theory was not
necessary to refute the range property. If a construction can be done without
using reflection, it would be a serious improvement over our result.

It may seem unlikely that a counterexample could be constructed based
merely on ethereal K*s. However, we will now show that this mechanism is
actually quite potent. Specifically, we define a term F' such that

F()\ZL‘l e ZL‘l.l‘iMl e Mm) =H F()\ZL‘l e {L‘l/.{L‘le c Mm’)

— m—1l=m'-1
Definition 96. For M € A, let M = CM = \zy.Myx. Put

Zpr = Az.z(Zp(zp)z)
Gy = Az.2(G(y o K)z)
F=Gox

Now we compute

Fz = G(Zx)
= \z.2(G
G

(
(

(Tx 0 K)2)
(A\y.Zz(Ky))z)
G(\y.Zz(Ky) 0 K)z))
G(Ay.zz(K(Ky)))z))

= \z2.2

= \z.2(z

(
(
(
(

= \z.2(z

= Az.2"(G(A\y  dw.w™(Z(K"y) (z(K"y) "™ )w))z)

Notice that all subterms are solvable in the last term. At the same time, the
only trace of = receives a tunnel consisting entirely of ethereal K-infinities,
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all of them identical. It is straightforward to verify that when M and N
have the same Bohm rank, then FM = FN. It is less straightforward, but
possible using the usual tandem of Church—Rosser and Standardization, to
verify that the converse holds as well.

That F' equalizes all terms with the same Bohm rank suggests that ethe-
real terms can have dramatic influence in 4. While this does not yet give
us a term with finite range, it brings us dangerously close: if we can find a
term H such that x €3y Hx and Hx = H(\y.x), then combining H with the
mechanism in F' will yield a solvable Plotkin term.

However, we believe that such an H does not exist, for its existence would
contradict Conjecture 65. We conjecture that partitioning terms according
to their rank is the furthest we can get without using reflection.

In conclusion, we remark that generalizing Corollary 48 to those (M,,)
which have x as the only free variable is still open.

Problem. Does there exist a computable sequence (M, < A(x) with

1< |[A°/X~Y | aM[z := X] = aM[z := Y] for some M = (M,)}| < w
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Chapter 7

Properties of Enumerators

In this chapter we study reflection in the Lambda Calculus from an axiomatic
point of view. Specifically, we consider various properties that the quote "'
must satisfy as a function from A to A. The most important of these is the
existence of a definabile left inverse: a term E, called the evaluator for "',
that satisfies E"M" = M for all M € A.

Usually the quote "M" encodes the syntax of the term M, and the evalu-
ator proceeds by analyzing the syntax and reifying all constructors by their
actual meaning in the calculus. Raymond Smullyan [1994] wondered which
elements of the syntax must be accessible via the quote in order for an evalu-
ator to exist. He asked three specific questions, to which we provide negative
answers.

7.1 Introduction

Reflection is a powerful phenomenon in mathematical logic. Its most dra-
matic application was by Godel, who used it in the proof of his famous
Incompleteness Theorems, which destroyed Hilbert’s formalist program in
its original incarnation (one could call the latter Naive Formalism.) Soon
after, it was at the heart of the proofs of equivalence between various models
of computation that ultimately provided evidence for Church’s thesis. In
particular, it is the core component of the enumeration theorem, a result
used implicitly in virtually every proof of Recursion Theory.

The ability of a computing system to interpret its own syntax also played
a significant role in the evolution of functional programming languages. For
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example, in one of the early reports on the development of Lisp, John Mc-
Carthy [1962] introduced the so-called Meta-Circular Evaluator — a Lisp
form which can execute an arbitrary list as a Lisp form — a "universal Lisp
form”. Since then, many languages (including Lisp, Prolog, Smalltalk, etc.)
have been designed ground-up using a meta-circular implementation. In the
other direction, some languages have the “quote” command, which represents
expressions of the language within some standard datatype. The presence
of an explicit quote operator is one of the reasons why Lisp is not a pure
functional language.

The peculiar use of self-reference made Godel’s argument a favorite among
philosophers, and inspired a number of publications in popular science, some
of which even attribute a certain mystical element to the work of Godel.
For example, in his introduction to Godel, Escher, Bach: an Eternal Golden
Braid, Hofstadter [1999] wrote: " GEB is in essence a long proposal of strange
loops as a metaphor for how selfhood originates.” While Hofstadter’s thesis
is not falsifiable!, it nevertheless paints a pleasant allegorical picture, and
has stimulated much positive interest in Godel’s work.

The questions of Smullyan were brought to our attention by Henk Baren-
dregt. Of course, they are only a sliver in the more global puzzle of under-
standing reflection as a distinct phenomenon. There is still lacking a general
concept, an all-inclusive definition through which the common features of the
constructions in Goédel’s theorem, computability, number theory (systems of
arithmetic), and set theory could be related. Finding such a concept remains
a fascinating open problem.

7.2 Coding of lambda terms

The first enumerator for the lambda calculus was constructed by Kleene
[1936] in the proof that every lambda-definable function is computable —
among the first pieces of evidence for the Church-Turing thesis. Together
with the proof that every computable function is lambda-definable, this gave
an interpretation of lambda-calculus within itself. Kleene’s approach used
Godel’s arithmetization of syntax, which codes grammar trees of terms as

'If someone proposed a theory of consciousness which fully explained the phenomenon
to everyone’s satisfaction without a single reference to reflection, we could still say: “But
maybe there is some model, or theory, which can also explain consciousness, and for which
self-reflection is a good metaphor.”
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natural numbers. This has the drawback that an evaluator exists only for
terms whose free variables come from a finite set which is fixed in advance.

Mogensen [1994] found an elegant self-interpreter which, instead of coding
variables by numerals, coded them by themselves. The coding therefore
allows an evaluator which is uniform on the set of all (open) lambda terms.
Mogensen’s construction has a different drawback: it lacks a discriminator
— a term which can test whether or not two quotes code the same term.
However, Barendregt [1994] did find a discriminator for Mogensen coding
which works for all closed terms.

A more significant distinction between Kleene’s enumerator and Mo-
gensen’s is that Kleene actually emulates variable binding within the quotes.
This requires a number of auxiliary functions to deal with alpha-conversion,
making definitions rather complicated. On the other hand, Mogensen en-
codes binders by actual “meta-level” lambdas. This technique is known as
Higher Order Abstract Syntax (Pfenning and Elliott [1988]), and Mogensen’s
coding is arguably the most canonical application of it.

Classically, an enumerator is a term E such that every closed lambda term
is convertible to Ec,, for some natural number n. An interesting result on the
coding in lambda calculus states that all enumerators are reducing: if E is an
enumerator, then VA € A° 3n € N s.t. Ec, — M. Richard Statman gave
the first proof of this result using computability theory, and Henk Barendregt
provided a constructive adaptation, which can be found in the festschrift of
Dirk van Dalen (Barendregt [1999]).

To keep matters simple, we will restrict our attention to the coding of
closed terms, and work in the combinatory version of the lambda calculus
with basis {K,S}. This results in no loss of generality, as all closed lambda
terms can always be written in this basis. Indeed, our constructions can be
translated into Mogensen coding rather explicitly. Furthermore, the choice
of basis has no effect on our results.

In what follows, we will need to have a standard, reference coding with
which others can be compared. Any of those mentioned above would work;
we will use a variant which uses pairing to represent the syntax trees.

Definition 97. (Cano_)nical Quote) For M e A, write [My, My| = Az.2M; My,
(My,---, M,y = Az.zM, and let Mq;, denote the combinatory translation of
the lambda term M. Now define

e M = (SI(KM)) = (M), if M € {K, S}
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o MN = (A\vyz.zay)cr MN = [M, N]cp for all M, N.

7.3 Axioms for the quote operator

A coding is a map from A2, into itself. Since the primary application of
coding is the manipulation of the syntax of terms, most of the properties that
we investigate will concern existence of combinators relating the structure
of a term to that of its quote. Among these, most attention is given to
the Constructor and Destructor axioms. Roughly, the former allows one to
obtain the quote of a term from the quotes of its subterms. The latter is
dual: it breaks up the term into its subterms (with respect to the quote).

Definition 98. (Coding Axioms) Let "' : AL, — AL,. We say "' satisfies
axiom X from among those below if there exists a combinator X with the
stated property.

ArM1rN1 — rMN1
BFM'l — rrM‘l‘l
P: PirMQMl-I = r.Z\4Z‘-I 1€ {O, 1}

CON (constructor) : {g

DES (destruct : K M=
(destructor) 7. 7,y M = { * be (K,S)

UM =M (uncoding)

U:
CMP (complete) :
Ul UM ="M" (encoding)

E (evaluator) : EM' =M
K M=N
A (discriminator) :  A"M''N' =< _ ‘
K otherwise
MON (monic) : VM,N e A%, ‘M'='N'"= M=N
SOL (solvable) : VM e A2, "M’ is solvable

Remark 99. Smullyan called a coding satisfying CON admussible, and a
coding satisfying DES preadmissible. He asked whether either implies the
other, and whether an evaluator can be constructed from CON. All three
questions have negative answers.
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Remark 100. Axiom B appears to be too strong: if we want to requote M,
why should we care about the particular alpha-equivalence class of "M'? It
may be more reasonable to require

B™: B~ "M" ="'N", where N = "M"
Nevertheless, we will proceed with Smullyan’s original formulation.

The axioms above are the primary focus of our attention. In studying
them, the following auxiliary properties are useful.

Definition 101. We introduce two additional axioms

K M e{K,s}

Z2 (leaf test): Zy M =< _
K M = MOM1

Rp (range test): 3 c.e. D < AY;, Range("') = D, ARpe A2, VN e D :
K iM. N="M"
RN = {

K otherwise

Proposition 102. (Elementary properties) Let "' be a coding. Then the
following implications hold:

1. "'=. = CON ADES A E A A

2.7 = SOL, DES = MON, A = MON A Z
3. CMP = CON A DES A A

4. DES — U = E

Proof. 1. We verify that the standard coding has all of the properties of
interest.

o Let Py = (K); = SI(KK). Let P, = (K); = SI(KK). Then

B[ My, My] = I[ My, My](K(Azozy.2:)[ Mo, Mi])
= ()\ZL‘QI‘l.l‘i)MoMl = Mz

In particular, P,MyM;, = M;.
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Let Z» = (\z.2U3I)cr. Then

Z?[ZL’] =K
Zolz,y] =K

In particular, ZyMN = Z,[M, N| =K, while Z-K = Z;S = K.
With Z, satisfied, it is trivial to get full Z. Since K, S are normal
forms, by Bohm’s theorem (Barendregt [1984]), there exist closed
terms 6 such that K@ =K and 86 = K. Then

Zgx = (IF Z,x THEN x@ ELSE K)cp,

— —
Zsx = (IF Zyx THEN x (KK ELSE K)o,

So far we have proved that - satisfies DES. To show axiom A, let
P = (Azyz.zzy)cor be the pairing function. Explicitly,

P = S(S(KS)(S(KK)(S(KS)(S(K(SI))(S(KK)I))))) (K(S(KK)I)))

Now - satisfies A by taking A = P. Furthermore, this is the
representative of the f-equivalence class of M N that was chosen
by Definition 97, i.e. MN = (PM) N

Using a fixed-point combinator, put
Bx = (IF Z;x THEN (Zxx)KS ELSE P(PR(B(FPyx)))(B(Piz)))cr

From now on, we will omit the (-)¢y, subscript, meaning that any
A-expression is implicitly converted to its combinatory equivalent.

Evaluator is easy for the standard coding:

Ex = IF Z,x THEN zI ELSE z(Azy.Ex(Ey))

So is the discriminator:

Axy =IF Zox
THEN IF Zyxx THEN Zxy ELSE Zgy
ELSE IF Zyy THEN K ELSE (A(Pyx)(FPoy))(A(Pix)(Piy))K
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2. That Z = SOL is an immediate consequence of the Genericity Lemma
(Barendregt [1984, 14.3.24]).

That A = MON A Z is also immediate.

To see that DES = MON we proceed by induction on the height of
M. The base step is assured by Z. If M = MyM;, and N = NyNy,
then (M # N) = (M; # N;) for some i. If "M = "N, then applying
the 7’th projection contradicts the inductive hypothesis.

3. Use translation to - and back.

4. Take
Uz =1F Z,x THEN (Zxx)KS ELSE As(U(Pix))(U(Pex))

where A, is a combinator witnessing axiom A for the standard coding.

Then take
E=E,oU

where E; is the standard evaluator constructed in part 1. O

Note that if the coding is a constant map, then it satisfies CON but neither
Z nor E. Thus, as pointed out by an anonymous referee, two of Smullyan’s
questions have trivial answers.

A slight modification to the standard coding gives a counterexample that
is also monic and solvable.

Theorem 103. There exists a map "~ which satisfies CON, MON, SOL,
and P, yet neither Z nor E. In particular, CON =~ DES.

Proof. Define "' by
o 'M'=[QM]if M e {K, S}
. rMN1 = PrM1 rN1 — [rM-l’ rN1]

Note that "' is monic, solvable, and satisfies A, P, and Z» via the same
combinators as the standard coding. The combinator witnessing B must be
modified ever so slightly:

Bx =1F Zyx THEN (Zgx)"'K'" "'S" ELSE P(P'P(B(FPyx)))(B(Pix))
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To finish the proof, note that if Z(Az.x(Q2M)) = K, then by Genericity
Lemma (Barendregt [1984, 13.3.24]) we have Z(Az.z(QM)) = Z(Az.z(QN)).
Therefore, no term can satisfy axiom Z. By the same token, no evaluator can
exist, for its value on 'K’ would necessarily agree with that on 'S". O

Theorem 104. There exists a map - satisfying Z and P which does not
satisfy A. Thus DES =& CON. Furthermore, "' is monic and solvable.

Proof. For M € AL, let s(M) denote the size of the syntax tree of M, defined
inductively by s(K) = s(S) = 1, s(MN) = s(M) + s(N) + 1. Certainly, s(M)
can be easily computed from M:

St =1F Z,x THEN c; ELSE c(5(Pyz))(5(Pix))

where c, is the addition on the Church numerals.

For n € N, let H,, be a lambda term encoding the first n values of the
characteristic function of the halting problem. Specifically, we put H, =
Choyhay oo yhy 1) = \z.zh, where

- {K eili)l

K otherwise

For 0 < k < n, let II} be such that IIP(My, ..., M,y = (M, ..., My). For
example, II}! could be obtained by taking II}} = Ilc,cj, where

[Ink = Azz.x(kB(As.k{(I)(nKs))z)

(here B is the composition combinator Azyz.z(yz).)
Finally, put
"M = [M, Hyn) (7.1)

Trivially, MON and SOL are satisfied. To see that this coding satisfies
axiom Z, we simply compose the combinator Z, for the standard coding with
the first pair-projection:

K M=b

K otherwise

(A2 Zy(2K)) M = { be {K, S}
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For the ith projection, we use the standard combinator P; with the aux-
iliary combinators we defined above:

y)
,H(SMoMl)(SM )<h0, N hs(MoMl)—1>]
Choy - hgary—1)]

(Az.(Ay.[y, T1(3(zK)) (5y) (2K)]) (P (2K))) " Mo M
=(Ay. [y, TL(5("Mo M1 'K)) (8y) (" Mo M1 "K) ) (Pi (" MoMl K))
=(Ay.[y, TL(3("Mo M, 'K)) (5y) ("Mo M, )])(R([MoMlaHs(MoMl)]K))
=(Ay.[y, IL(3(" Mo M, K)) (5y) (" Mo M, "K) ) (P Mo M, )
=(Ay.[y, TL(5Mo M) (5y) (H s(ao 1)) 1) M
[
[

Hence (7.1) satisfies DES. But notice that
ve(e)] = "K°I'KUS =K

Therefore, if there was a combinator for axiom A, we could decide the halting
problem by checking whether c.(A'K") "IT'KU¢ equals K or K. Such an A cannot
exist. Thus "' does not satisfy CON. O

Notice that non-computability of the coding "' was essential in the proof
above. Indeed, if the coding was computable, then axiom U~! would be
satisfied. By Proposition 102, part 4, the destructor axiom would make the
coding complete. Then by part 3, it would satisfy CON.

143



7.4 Positive results

The next natural question is what additional property could be sufficient for
the equivalence CON <= DES to hold. It turns out that existence of a
discriminator goes quite far in this direction.

Theorem 105. A A U™! = U.

Proof. To construct U, we need to uniformly enumerate all combinators built
up from K and S. Recall that [M,] is a uniform enumeration of {M,} if for
each k, there is some X}, such that

[M,] = [Mo, [My, [Ma, ... [My, Xi] ... ]

That is, [M,] is an infinite stream whose elements form the sequence {M,}.
The following functions operate on streams:

Map fm = [f(mK), Map f (mK)]
Foldfm = f(mK)(Foldf(mK))
Mergemn = [mK, [nK, Merge(mK)(nK)]]
(These definitions implicitly make use of fixed-point combinators.)
Now we define the standard enumeration of CL terms to be
% = [K, [S,Fold Merge (Map (As.Map s €) )]

It is straightforward to verify that for each M € A%, there is a unique n such
that M = C,,, where € = [Cy, [C4,...]]. But here we need the combinators
to be quoted, hence we define

€ = [K, [S,Fold Merge (Map (As.Map (Ps) €) ©)]|

where P is the pairing combinator for Proposition 102. (Note that this nota-
tion is overloaded; we don’t mean that € is the standard quote of %.)
Define

Upsz = 1F Ax(U *(sK)) THEN sK ELSE Upy(sK)z

U=U0%
Note that Uy& " M" = M, , where n = (uk)(M = My, € €). Thus
UM =M
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Theorem 106. Suppose " is a coding which satisfies A. Then U™! «—= A.
In particular, CON A A = DES.

Proof. (=) By the theorem above and Proposition 102.3,
AAU'= CMP = CON A DES = A.
(<) Suppose A and A are satisfied. Put

Ul = 1F Zu
THEN IF Zgx THEN 'K' ELSE 'S’
ELSE A(U™Y(Pyx)) (U™ (Pix))

By induction, U='M = "M", hence U~! is satisfied. O

It remains to consider the question of reconstructing the quote from the
Destructor axioms. The problem with using the approach of Theorem 105,
where we try to “guess” the quote of a term by comparing every possibility to
the input, is that we have no information on the space of these possibilities.
This is where the range test comes in. Recall that the statement of this
axiom is

3 c.e. DS A%, Range(™") = D, 3Rp e A%,, YN e D :

K AM. N ="M’
RDNz{

K otherwise

With the axiom above, we state the final theorem.
Theorem 107. DES A Rp = UL

Proof. As in the proof of Theorem 105, we construct U 'z by looking at
all possibilities until we find one that matches x, according to the standard
discriminator. Let D enumerate a superset of Range("-'). We receive this
fact as a uniform enumeration D = [M,], such that for each n one has
RpM, = K if M, = "N' and RpM, = K otherwise. Furthermore, every
quote "N appears in the list D: VN3n "N’ = M,,.

As per Proposition 102.d, let U witness axiom U for "-'. Now put

U 'z = Fold (\it. ¥ (Rph)(Ax(Uh))K THEN h ELSE t) D

It is routine to verify that U 1M = "M" for each M. O
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Corollary 108. For a complete coding, one of the following suffices:

AAA
Ul AA
U~! A DES
Rp A DES

Proof. By the theorems 102 through 107.
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Chapter 8

Principal Subtyping of Lambda
Terms

The Principal Type Theorem, usually attributed to Curry, Hindley, and Mil-
ner (Barendregt et al. [2011]) is a fundamental result in the simple theory of
types. It states that every lambda term which can be given a simple type
has a so-called principal type, which is the most general type this term can
have. The Hindley—Milner type inference algorithm reduces the problem of
finding this type to first-order unification.

By adding equations between simple types one obtains the recursive types.
While they are more complicated than their simple counterparts, there is still
a notion of a most general recursive type, the principal recursive type of a
term M. Furthermore, this principal recursive type can be found by turning
off the “occurs check” in the unification subprocedure of the Hindley—Milner
algorithm. (The occurs check is a condition which prevents the solution from
having cyclical terms.) Thus, ironically, it is more simple to find a principal
recursive type than to find a principal simple type!

Because the simple types are generated by a single binary constructor
(the arrow symbol), any set of unification constraints has a solution if fixed-
points are allowed. Hence, every lambda term can be given a recursive type.
Nevertheless, recursive types can be very useful in characterizing untyped
lambda terms. As we will see, they naturally induce a partial order on A,
which stays non-trivial even on the set of unsolvable terms.

Here we will extend the above results to theories of subtyping. Like
simple types, subtyping theories characterize computational properties of
lambda terms. The recursive types extend the characterization via simple
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types, while subtyping theories further refine it. These results were included
in the new book by Barendregt et al. [2011], with simpler proofs due to the
authors.

8.1 Types, recursive types, subtyping theo-
ries

This section defines the basic concepts which we work with. Our definitions
closely follow Barendregt et al. [2011].

8.1.1 Simple types
Let a set A be fixed.

Definition 109. The set of types over A is given by the grammar

T:=A|T->T

F—a2:A (x:A)el

I'-M:A—- B I'-N:A
I'-MN:B

e:A-M:B
'-XeM:A—-B

Figure 8.1: The system A_,

Definition 110. (Type assignment)

1. A (typing) judgement is an expression of the form M : A, where M € A
and A e T. M is the subject of the judgement, and A is the predicate.

2. A declaration is a judgement whose subject is a variable. A basis is a
finite set of declarations with distinct subjects.
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3. The relation — < {I" | I' is a basis} x A x T is defined by induction
according to the rules in Figure 8.1. When (I, M, A) € -, we say that
the statement M : A is derivable from the basis ', and write I' = M : A.

The most trivial semantics for simple types is obtained by interpreting
the atomic types a € A as some arbitrary sets and the arrow type A — B by
the full function space between the sets denoted by A and B.

Definition 111. Let {X, | o € A} be a family of sets. The full type structure
over {X,}, written {2 (A)} ser is defined inductively as follows:

1. Z'(a) =X, for a € A,
2. 2(A=B)={f|[: Z(A) > 2(B)}.

With the above definition, all A-terms which can be assigned type A by
the system A_, can be interpreted as elements of 2°(A). If A is a function
type A9 — Ay, and M : A, then [M] is a function from 27 (Ap) to 2 (A4;).

A=A (Refl)
- B
=4 (Sym)
A=B B=C
1—C (Trans)

A=A" B=D _
A S B A S B (Arrow-=)

Figure 8.2: Closure laws for type theories

8.1.2 Recursive types
Definition 112. Let T be fixed as above.

1. A type equation is an expression of the form A = B, with A, Be T.

2. A simultaneous recursion (s.r.) is a finite set of type equations.
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3. A type theory is a set of type equations which is closed under the rules
in Figure 8.2. (In other words, T" is a type theory if and only if 7" is a
congruence on (T, —).)

4. If F is a set of type equations, then the type theory generated by E is
T(E) = ﬂ{T | T is a type theory and E < T'}

Equations of the type theory generated by an s.r. can be used in deriving
a type for a lambda term.

ElTkRz: A (x:A)el

EET+-M:A—-B ETRFN:A
E;I'-MN:B

ETx:A+-M:B
ET-M.M:A— B

E'-M:A (A=B)eT(F)
E:I'=M:B

Figure 8.3: The system )\E

Definition 113. Let F be a set of type equations, and I' a basis. The set of
lambda terms typable in the context I' using equations from E is defined by
induction via the deduction system given in Figure 8.3.

The system A can be much stronger than A_, given sufficiently rich
E. For example, if there are types A, B with (A = A — B) € T(E), then
E; 3+ Q: B, where Q = (Az.zz)(Az.zx). In contrast, { cannot be assigned
any type in A_,, because this system has the strong normalization property,
while €2 has no normal form.

It is more convenient to talk about type theories using the language of

type algebras.

Definition 114. A type algebra A is a pair (A, —) where A is a set and —
is a binary operation on A.
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An example of a type algebra is (T, —); this is called the free type algebra
over A. Another example is (T/~, —), where ~ is a congruence on T with
respect to —; this is called the syntactic type algebra over T with congruence
~, or the quotient algebra (T,—) modulo ~. Barendregt et al. [2011] show
that every type algebra is isomorphic to a syntactic type algebra over T for
some A and an appropriate type theory ~. (Basically, this is just the First
Isomorphism Theorem for binary operator algebras.)

F'az:a a€A (x:a)el

FI—AM:a—>Ab FI—ANZCL
I'—4 MN :b

x:aba M :a
g e M:a—40b

Figure 8.4: The system )\f

Definition 115. Let A, B be type algebras.

1. A homomorhpism from A to B is a function h : A — B such that

Va,a' : A h(a -4 d') = h(a) -5 h(ad)

2. Let h be a morphism from A to B. The kernel of h is the set ker h =
{(a,a’) € A x A | h(a) = h(a')}. It is routine to verify that the kernel
of a homomorphism is always a congruence. (Hence A/ker h is a type
algebra, and if h is surjective it is in fact isomorphic to B.)

3. Let p : A — A be any map. The homomorphism p induced by p
is defined in the obvious way by taking p(a) = p(«a) for o € A and
pla — b) = p(a) -4 p(b). Then p is a morphism from (T, —) to A.

Obviously, the point of type algebras is that they allow us to interpret
type theories.

Definition 116. Let 17" be a type theory. The type algebra generated by T
is the quotient algebra A(T') of (T, —) modulo T
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Definition 117. Let A be a type algebra, and let T" be a type theory.
1. A type environment in Ais a map p: A — A.
2. pgustifies T in Aif Y(a=0b)eT pla) = p(b).
3. A satisfies T if there exists a p that justifies T in A.
Fact. A satisfies T < 3h: A(T) — A.
The system AZ can be translated into the language of type algebras.

Definition 118. Let A be a type algebra. The set of terms typable by
elements of A is given by the deduction system in Figure 8.4.

Type algebras make it easy to talk about recursive types.

Definition 119. Let E be a s.r. A recursive type (with respect to E) is an
element of the type algebra T/T'(E).

A< A (Refl)
A<B B<C
1<C (Trans)
Asd BB (Arrow-<)

A—-B<A - DB

Figure 8.5: Closure laws for subtyping theories

8.1.3 Subtyping
Definition 120. Let A, T be as before.

1. A type inequality is an expression of the form A < B, where A, B € T.

2. A subtyping theory is a set of type inequalities closed under the rules
in Figure 8.5.
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3. If I is a set of type inequalities, then the subtyping theory generated by
I is the set

T(I) = ﬂ{T | T' is a subtyping theory and I < T}

Definition 121. A type structure is a triple S = (S, —, <), where (S, —) is
a type algebra, (S, <) is a poset, and the following axiom is satisfied:

Vs, tteS d<snt<t =s5s—>t<s >t
M Y

An example of a type structure is Sg = (T, —, =), which is trivial because
the poset (T, =) is trivial. Nevertheless, we still call it the free type structure
over A. A better example is the following:

Definition 122. Let T be a subtyping theory. Write a ~7 b if both (a < b)
and (b < a) are elements of T'. Then ~7 is a type theory. The type structure
generated by T'is the triple S(T') = (S, —s, <s), where (5, —s) = (T, =) /~r,
and [a]., <s [b]~, if and only if (a < b) € T. (It is easy to check that this
is well defined.)

FFsx:a aeS (x:a)el

I'tksM:a—-sb T'FsN:a
I'-s MN :b

Ne:aksM:a
I'bFsAx. M :a —sb

C'bsM:a (a <sb)
T s M:b

Figure 8.6: The system )\i

The partial order of type structures refines the typability hierarchy of its
underlying type algebra.

Definition 123. Let S be a type structure. The set of A\-terms typable by
elements of S is defined inductively by the system Xi in Figure 8.6.
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The system could also be presented in terms of a set of type inequalities I,
then one obtains the system shown in Figure 8.7 below. However, we prefer
the approach via type structures, since it is more flexible.

IIT—2:A (x:A)el

I;TM:A—-B I T-N:A
;' MN : B

ITz:A-M:B
LT=MM:A— B

IT'-M:A (A< B)eT()
LiI'-M:B

Figure 8.7: The system /\IS

Definition 124. A homomorphism between type structures S and S’ is a
map h : S — S’ which is monotone with respect to < and is a homomorphism
of the underlying type algebras.

Definition 125. Let 7" be a subtyping theory, and S a type structure.

1. A type environment in S is any map p : A — S. As before, this map
trivially extends to a type structure morphism p : (T, —,=) — S.

2. p justifies T in SEV(A< B)eT p(A) <s p(B).
3. S satisfies T if there exists a p that justifies T"in S.
Fact. S satisfies T < 3h:S(T) — S.

To show the reader how routine the proofs of these facts really are, we
give the proof of the one above.

Proof. (<) Let h : S(T) — S be a morphism. Then (Aa : A.h([a]r)) is a
type environment justifying 7" in S.

(=) Suppose that S satisfies T via p. We will show that p is constant on
the ~p-classes of T. It will then be well-defined as a morphism from S(7').
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Suppose that (A < B) € T and (B < A) € T. Since p justifies T" in S,
p(A) <s p(B), and p(B) <s p(A). Since § is a poset, p(A) = p(B). Thus p
is a type algebra morphism from (T, —)/~7 to (S, —s), and is also monotone
with respect to <s because p justifies 7. O

8.2 Principal types

We recall the principal type theorem for simple and recursive types.
Definition 126. Let A and T be fixed as before.
1. A substitution is a partial map from A to T.

2. If o is a substitution, we write o(A) for the type obtained from A by
replacing every a € dom(o) by o(«). (Basically, we just extend o to
a homomorphism from T to T by making it act as identity on atoms
outside its domain.)

3. A type A is more general than B if there exists a substitution o such
that B = o(A).

Theorem 127. (Principal Type Theorem, Curry-Hindley) For each M € A
there exists a basis I' and a type A such that

1.THM:A

2. If T' = M : A’, then there exists a substitution o such that T" 2 o(T),
and A" = o(A).

Furthermore, the pair I'; A can be found in linear time.

The type A in the theorem above is called the principal type of M. It
is unique modulo renaming of type atoms. The theorem states that the
principal type of M is more general than any other type A’ with IV — M : A’.

Definition 128. A type algebra A is weaker than A’, writing A < A', if for
any type theory T’

A satisfies T = A’ satisfies T
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Fact. For type algebras A, A" we have
A< A — Fh: A-> A

Theorem 129. (Principal Recursive Type Theorem) For each M € A there
exists a type algebra A, a basis I, and a type a € A such that

1. FI—AMIG,

2. If T =4 M :d, then A< A'. Furthermore, there exists a morphism
h:A— A such that T" 2 h(T'), and o’ = h(a).

The triple (A,T,a) is called the principal triple of M. For the proof of
this theorem, see Barendregt et al. [2011].

In the following section, we provide an analogue of Theorem 129 for sub-
typing theories.

8.3 The principal subtyping theorem

Definition 130. Suppose S, S’ are type structures. We say that S is weaker
than &', writing S < &', if, for any subtyping theory T,

S satisfies T = S’ satisfies T.
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Proposition 131. S <S8 < Fh:S§ - 5.

Proof. (=) Let h: S — &' be a morphism. Let T be a subtyping theory and
p: A — S an environment justifying 7" in §. Then h o p justifies T in §'.
(<) Suppose § < §'.
Consider T® — the set of types over atoms from S. Define [ ] : T — S
by

o [s] =s
e [A— B] =[A] —s [B]

Now put 7' = {A < B | A, B € T° and [A] <s [B]} Clearly, T is satisfiable
in S via [ ]. Since § is weaker than &', let p : S — S’ be an environment
justifying 7" in 8. p is the required homomorphism. O

Definition 132. Let T, 7" be subtyping theories. Say that T is weaker than
T', writing T' < 17", whenever S(T) is weaker than S(7").

Proposition 133. Let o be a substitution. Then T is weaker than o(T).

Proof. Let p justify a subtyping theory 7" in S(T). Then & o p justifies it in
S(o(T)). O

Recall that a lambda term M is typable in a type structure S if there
exists a context I' and a type A such that I' =g M : A according to the rules
given in Figure 8.6.

Proposition 134. Suppose that S < 8" and M is typable in S. Then M 1is
typable in S'.

Proof. Let h: S — & be a homomorphism. By induction on the derivation
of I' =g M : A, we see that (") s M : h(A). O

Theorem 135. For every lambda term M there exists a subtyping theory T
such that
M is typable in S < S(T) < S

Proof. We define the subtyping theory Ty, context ['y;, and type Ap; by
induction on the structure of M:
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e M = x. Then
(TM,FM,AM) = (@, {.T : Oém},()éx)

o M = MOMI- Given (TM()’FM();AMO) and (TMUFMUAMl)a put
(TMarMuAM) = (TMO UTMI v {AMO < (AMI - ﬁM)}arMo v FM17/BM)
e M = Xx.N. Given (T,I'y, Ay), put

(Tar, Toar, An) = (T, v \{z @ o}, oy — A)

Note that the declarations = : A are only introduced into I'y; when M is
a variable. Thus we have the following consequence of the above definition:

(x:A)ely —=reM = A=q, (8.1)

We also assume that different bound variables have distinct names and
that the Variable Convention is observed (otherwise, we first a-convert M).

Now we show that T" = T); has the required property.

Suppose S(T') < §. By the previous proposition, it suffices to show that
M is typable in S(T). . We show by induction on M that

e M = x. By a single application of the variable rule,
Tix o, - x oy

e M = MyM,. By the inductive hypothesis, we can complete the follow-
ing derivation:

TM(); I\]\4() = MO : AM() :
Ty, Ary < (Any = Bu); Ty = Mo - Avey, = B T Ty = My 2 Ay

Ty O {Any < (Anr, = Bar)} O T Tagy © Ty, = MoMy 2 By
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e M = Ax.N. By the inductive hypothesis, we have Ty;:I'y - N : Ay.
Taking note of (8.1), we write

TN;FN,I‘IOQB I—NIAN
By rule (—I), we get

Ty;Tn\{z:a,} - Ae.N:a, > Ay

In all cases above, (8.2) is verified. It follows that I'ys sy M @ Ap.

Conversely, suppose that A g M : B. We are to show that S(T') < S.
By Barendregt et al. [2011, 11A.18] we may assume that FV(A) = FV(M) =
FV(T).

By Proposition 131, it suffices to find a type environment p : A — §
which justifies T"in §. We will extract p from the derivation of A -5 M : B.
This too will be done by induction.

Let m be a derivation of A s M : B. For N < M, let my be the
smallest subderivation of © whose root (last typing judgement) contains N
as the subject. (Even if N occurs several times in M as a subterm, each such
occurrence has a unique corresponding subderivation.) Since the premise of
the (<) rule has the same subject as its conclusion, the minimality of my
implies that its last rule is not (<), but is uniquely determined by the top-
level term constructor of N. Let o(NN) € S denote the type that is assigned
to N at the root of my.

We define a partial map py : A — S by induction on N:

e N = x. We have two possibilities.

1. z € FV(M). Then py = (ay, A(x)).

2. z is bound by the top A in (Az.N') € M. Then py = (g, A),
where o(Ax.N') = A - B.

o N = NONI' Then PN = PNy Y PNy Y {(BN7O-(N))}
e N =) z.N'. Then py = pnr.
Finally, put

p=J rv=ru
NcM
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An important consequence of the definition above is that for N < M,
p(An) < o(N) (8.3)

(Notice that we actually have equality in all cases except abstraction.)
It remains to show that p justifies T'in S. Since N € M = Ty < Ty,
this too can be done by induction on N:

e N =uz. Then Ty = &F, so certainly p justifies Ty in S.
e N = \x.N'. By IH, p justifies T». Then certainly p justifies Ty = Tnr.

e N = NyN;. This is the interesting case. By induction, we know that
p justifies both T, and Ty,. To see that p justifies Ty, it remains to
show that ﬁ(ANo) <s ﬁ(ANl - BN)

By definition of o(V), we know that 7y must have the form

Tn;Tn = Ny : o(Ny) _ Tn;Tn = Nyt o(IVy) _

~ <

. < : g
TN;FNl—NoiB%O'(N) TN;FNl—NliB E
Twn;Tn = NoNi : o(N) -

Since the only inferences occurring in 7y between its last inference
(—E) and the root of 7y, are (<)-rules, we have o(Ny) < (B — o(N)),
and similarly o(N;) < B. Hence we have

P(AN,) <(8.3) 0(No)
B — 0(N) =w@er)y B — p(Bn)
(Arrow—<) U(Nl) - p(BN)

(8.3) pN(ANl) - ﬁ(ﬁN) = ﬁ(A]\h - BN)

INCIN NN

We have that p(An,) <s p(An, — Bn), finishing the induction. Indeed,
p justifies T = Ty, and S(T') < S, being what was required to show. O
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8.4 Discussion

The existence of principal recursive types and principal subtyping theories
suggests a new approach to measuring the computational content of untyped
lambda terms. The weaker-than relation < between type algebras applies
in particular to the principal recursive types of lambda terms. Thus this
relation can be extended to A as follows. For M, N € A, write A,;, Ay for
their corresponding principal type algebras. Put

M<XN < Ay <Ay (8.4)

This definition introduces a new non-trivial partial order relation on the
set of pure A\-terms. In contrast to the more classical notions like the Bohm
tree order corresponding to the partial order in the CPO semantics, or the
relative solvability order of Statman [1986], the relation (8.4) reflects the
relative difficulty in assigning a type to the lambda terms M and N. On
the semantic side, this addresses the following question: if we know that N
can be realized as a morphism between some collection of structures, does it
follow that M can also be realized as such?

For example, the principal type algebra A,; of the lambda term wI =
(Az.zz)(Ay.y) has an element a € A equal to a — a (Barendregt et al. [2011]).
This makes A,; a weakly terminal object in the category of type algebras,
since every other algebra can be mapped to it by the constant morphism that
sends everything to a. Hence for every other algebra A we have A < A1,
so that A,z is the “strongest” type algebra of all.

If we now work in the categorical semantics of simple types, then in
place of the element a = a — a of A,; we will find an object A isomorphic
to the exponential A4. The construction of such an object is the crux of
Scott’s domain semantics for lambda calculus, since a solution to the recursive
domain equation A = A“ allows one to interpret all lambda terms both as
maps over A and as elements of A. It is in this sense that being able to
interpret wI entails the ability to interpret all other lambda terms.

In contrast, the term €2 requires only having a type B equal to B — C,
in which case it can be given type C'. This recursive type does not suffice
to type all lambda terms: it is not universal like the principal type of wI.
Hence (2 is strictly weaker than wI: it can be realized as a morphism on the
type A = A4, but wI cannot be realized using only an object B isomorphic
to B = (. This is the semantic meaning of {2 < wI.
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Such a relationship might seem counterintuitive: wI is a strongly normal-
izing term with the unique reduction to its normal form I consisting of only
two steps, while €2 is not even solvable. Thus the weaker-than order measures
not so much the computational behavior of terms, but how demanding is the
task of assigning functionality to them. The term wI applies identity to itself
while requiring that its type be the same as its domain, necessarily equal to
the codomain as well. But §2 only requires a structure isomorphic to the set
of morphisms from it to some other space.

Furthermore, the subtyping order refines the above ordering, in the sense
we will now make precise.

Let TA and TS be the categories of type algebras and type structures,
respectively. In both cases, the weaker-than relation < is captured by mor-
phisms of the category. There’s a functor £ : TA — TS which assigns to
every type algebra the equality between its elements as a partial order. The
functoriality immediately gives A < B =— EA < EB.

The functor E has a right adjoint U — the forgetful functor that, given
any type structure, returns its underlying type algebra.

E also has a a left adjoint S, which, given (S, —, <) returns the quotient
of (S, —) modulo ~, where ~ is the symmetric closure of <.

Hence we have the following picture:

(A/%,%%) (—S— (A,—>,<)

(C.m)  —— (€. 5)
where the maps f and ¢ represent generic type algebra morphisms, and f
and g their transposes.

The above facts demonstrate precisely that subtyping refines the weaker-
than relation on A induced by type algebras. First of all, notice that E is an
embedding of TA into TS (in fact U o E is the identity on TA) — thus the
entire “<-preorder” of type algebras is fully represented by type structures.

More importantly, the fact that E has a left adjoint means that the princi-
pal subtyping theorem is a strict generalization of the principal type theorem
for recursive types. Specifically, let Sy, be the principal type structure for
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M. By definition, there’s a morphism from Sy, to any F(A) with M typable
in the algebra A. Since these morphisms are in one-to-one correspondence
with maps from S(Sy) to A, we see that S(Sys) is weaker than any other
type algebra that can type M. That is, S(Sy) is equivalent to the principal
type algebra Ay;. Thus the principal type algebra of M can be recovered
from the principal type structure of M.

The converse does not hold. Taking again the example wI, we find that
its principal type structure, even augmented with invertibility axioms, only
yields the inequality (A — A) < A (the symmetric reflection of which does
yield the reflexive type). This does not suffice to type every lambda term.
(For example, the closure of Ty, under invertibility axioms contains a type
A with inequalities (A - A) < A and A < (A — A), giving it the power to
type all lambda terms.)

This fact may seem puzzling, because in Scott’s costruction, it actually
suffices to have the function space A — A be a retract of A. Thus we might
expect that such inequality would yield the strongest “universal” subtyping
theory. So why does the categorical correspondence break down?

The answer is that the embedding—projection (EP) pairs that serve as
the retraction “preorder” in Scott’s construction do not reflect the intended
semantics of subtyping: with respect to the EP pairs, the function space
constructor is covariant in both arguments, while our type system assumes
the arrow to be contravariant in the first argument. Hence EP pairs do not
represent subtyping as we understand it. On the other hand, this “escape
from contraviance” makes the function space operator monotone, allowing
its iteration to inductively define the D, model in the limit.

We conclude that the theory of subtyping yields a new partial-order struc-
ture on the lambda terms, which stays non-trivial even on the set of unsolv-
ables. This opens a new avenue for studying relations between these terms, a
topic about which very little is known. It is not immediately obvious whether
the order described above is decidable, because type theories may be equiv-
alent without being the same (for example, {o« < 8 — [} is equivalent to
{a < a}). We conjecture that the <-order on A is decidable.
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