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AXIOMATIC RADICAL AND SEMISIMPLE
CLASSES OF RINGS

JOHN R. FISHER

The results of this paper combine two areas of abstract
mathematics: the theory of radicals for associative or alter-
native rings, and model theory for universal algebras. The
main theorem provides necessary and sufficient conditions
on the radical of any product ring and on the radical of
any ultraproduct ring in order that the radical class and
its corresponding semisimple class be finitely axiomatic
(elementary). As a corollary, it follows that if a radical
class of rings and its corresponding semisimple class are
axiomatic, then they are both finitely axiomatic. In addition,
several subsidiary results are given, and unanswered ques-
tions posed.

1* Introduction* Let Szf denote either the class of all asso-
ciative rings, or the class of all alternative rings. Suppose that
& is a subclass of <Ssf. For any ring A in j y , let &(A) denote
the sum of all the ideals of A which belong to &. Let S ( ^ )
denote the class of all rings in s^f having no nonzero ideals
belonging to &. Then & is a radical class in j ^ provided the
following properties (Rl), (R2), and (R3) hold.

(Rl) <% is closed under homomorphic images.
(R2) For every ring Aes$?, &(A)e&.
(R3) For every ring A e j#% the quotient ring AJ^(A) e S(&).

The rings in S(&) are called semisimple with respect to &. Pro-
perties (R4) through (R7) below are useful consequences of proper-
ties (Rl), (R2), and (R3). The ring A is assumed to belong to the
class jy\

(R4) If I is an ideal of A such that Ie& and A/Ie&, then
Ae&. This is called the extension property of radicals.

(R5) If I is an ideal of A and if A/IeS(^), then ^T(A) £ I.
(R6) & Π S ( ^ ) consists of the trivial ring (0).
(R7) S(&) is hereditary; that is, if i e S ( & ) and if / is an

ideal of A, then IeS(&).
References [4], [8], and [13] will provide the reader with the

fundamentals of radical theory for rings. Properties (Rl) through
(R6) are basic facts. Property (R7) is a result from [2], and can
be found also in [13, Corollary 5.3 or Theorem 8.1] for associative
rings. The radical class & in j ^ is called hereditary provided
property (R8) holds.

(R8) If A G J ' and / is an ideal of A, then / e ^ 5 .
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For a technical definition of an axiomatic class in model theory,
the reader is referred to [3] or [7]. Roughly stated, the subclass
& of J&f is axiomatic, respectively finitely axiomatic (or elemen-
tary), provided there is a set, respectively a finite set, S of formal
ring sentences (made up from variables, ring operations, equality,
and quantifiers) such that & is the class of all rings in j ^ that
satisfy all the sentences of S. A relevant example here is the
class of all Jacobson radical rings, which can be described as the
class of all associative rings satisfying the formal ring sentence
Vx3y(x + y + xy = 0).

The last definition needed before stating the Main Theorem is
that of an ultraproduct of rings. References [3] and [7] will again
serve as technical sources. For rings in j%f, the definition is given
below. Suppose that / is a set. A filter on I is a collection F of
subsets of / such that (a) if H,JeF then Hf]JeF; (b) if HeF
and J is a subset of / such that H £ J then JeF; (c) the empty
set does not belong to F. Given a family {At\iel} of rings in &9

let A — πAi be the product ring of the family, and let

K = {aeA\{i\a(i) = 0}eF} .

One can check directly that K is an ideal of A. The quotient ring
AF = AjK is the reduced product of the family modulo the filter
F on I. If F is a maximal filter on / (one not properly contained
in any other filter on I), then AF is called the ultraproduct of the
family modulo the ultrafilter F. If έ% is a radical class of rings
in j ^ , one can consider the ideal L of A, defined as follows:

Note that K Q L.

MAIN THEOREM. Suppose that & is a radical class of rings.
Consider the following conditions on έ%\

(A) & is closed under arbitrary products of members of έ%.
(B) If I is a set, F an ultrafilter on I, and {At | i 6 /} is a

family of rings, then

,^{AF) £ L/K ,

where

K= {αeπAt|{i|α(i) - 0}eF} ,

and

L = {aeπAt\{i\a(i) e^(A,)} eF) .
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The following implications hold:
(1) If & and S(&) are both axiomatic, then & satisfies

conditions (A) and (B).
(2) If & satisfies conditions (A) and (B), then both & and

are finitely axiomatic.

The proof of the Main Theorem is in § II. The proof depends
heavily on the results of [3, § V. 6 and VI. 6], using versions of
the theorems there relativized to the elementary model class ,jy
of rings, and requires the generalized continuum hypothesis. The
following corollary is an easy consequence of the Main Theorem.

COROLLARY. // & is a radical class of rings such that &
and S{&) are both axiomatic, then & and S{&) are both finitely
axiomatic.

In § III it will be shown that the ideal LjK of the reduced
product AF is naturally isomorphic to the reduced product

provided <% is closed under products. If & is closed under pro-
ducts and if &(A)F is identified with L/K, then condition (B) of
the Main Theorem could be written &(AF) C &(A)F.

The axiomatic radical classes of associative rings known to the
author are all finitely axiomatic. These radicals are described
below.

( i ) Radical classes determined by certain polynomial regulari-
ties.
See § III for a more complete discussion and references. Well-known
examples include the Jacobson radical, with axiom Vxly(x + y +
xy = 0), and the von Neumann regular radical, with axiom
Vxly(xyx — x = 0).

(ii) The radical-semisimple classes V(P, N) characterized in
[6].
These radical classes are subvarieties of rings. Included in this
characterization are the radical-semisimple classes j ^ (w = l, 2, •••)>
where SΓn has defining axiom Vx(xn = 0).

Proposition 2 of § III gives sufficient conditions for S{&) to be
axiomatic, and displays a defining axiom for S(^). The Jacobson
radical satisfies the conditions of Proposition 2, but the question of
which other axiomatic radical classes have an axiomatic semisimple
class remains open at this writing.

Proposition 3 of § III gives sufficient conditions, again satisfied
by the Jacobson radical, in order for the containment &
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) F of (B) of the Main Theorem to be an equality for all ultra-
products AF of rings.

Ultraproducts of associative rings have been used with success
in connection with the theory of prime rings satisfying polynomial
identities; see [1], [9, § 3 of Chapter 7], or [11].

II* Proof of the Main Theorem*

LEMMA. Suppose that & is a radical class of rings.
(a) If I is a set and {At \ i e 1} is a family of rings, then

(b) & is closed under arbitrary products if and only if

for any set I and family of rings {A
(c) If Au , An are rings, then

x xAJ = &(Aj) x x

Hence, έ% is always closed under finite products.
(d) έ% is closed under products if and only if & is closed

under reduced products.
(e) If & is axiomatic, then & is closed under arbitrary

products.

Proof. Items (a), (b), and (c) are fairly straightforward and
can be found in [10]. In particular, (c) follows by induction after
one has proved that the product of two radical rings is radical,
and the latter can be accomplished using the extension property
(R4) of radicals. To be technically correct, one should note that
the product of the empty family of radical rings is the trivial
ring (0), and (0)e^?. Item (d) follows, on the one hand, from the
fact that any reduced product (πAt)F = πAJK is a homomorphic
image of a product, so that if the product πAi belongs to & then
the reduced product (πAt)F belongs to & by (Rl). Conversely, any
product πAt is isomorphic to the reduced product (πAt)F, where
F = {/}, hence if & is closed under all reduced products, then &
is closed under all products. For (e), a theorem in model theory
applies [7, p. 292]. This theorem, stated for associative or alter-
native rings, states that an axiomatic class of rings which is closed
under finite products is also closed under arbitrary products. Π

(1) Suppose that & and S(&) are both axiomatic. Then (A)
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follows by the Lemma (e). For (B), suppose that / is a set, F an
ultrafilter on I, and that {At\iel} is a family of rings. Let Rt —

), for all iel, and A = πA{. Also let

α(i) = 0}eF} ,

L = {aeA\{i\a(i)eRi}eF} ,

and

J T - {/ e ff^fij I {i I /(i) - 0} 6 F} .

Then a straightforward check will confirm that

φ: A/L >π{AijRι)I^T

is an isomorphism, where

Φ(a + L) = a + K,

and where α 6 π(AJRt) is such that, for i e /,

Since S(&) is axiomatic, S(&) is closed under ultraproducts [3,
Corollary 6.6, p. 244]. Hence, the ultraproduct π(AJRτ)/3έr belongs
to S(&), since each AJRteS(&) by (R3). Thus, i / L e S ( ^ ) . But
A/L = (A/K)/(L/K), and so ^(A/K) = £P(AF) £ L/K by (R5). Con-
sequently, (B) also holds.

(2) Suppose that conditions (A) and (B) hold. To prove that
& is finitely axiomatic, it suffices [3, Corollary 6.6, p. 244, rela-
tivized to the model class s^ of rings] to show that both <%} and
^ ' , the complement of & in the model class ^f of rings, are
closed under ultraproducts. <% is closed under ultraproducts by
the Lemma (d). To show that ^ ? ' is closed under ultraproducts,
suppose that the ultraproduct AF = πAJK belongs to ^ . Then
&(Ar) = &e(πAJK) = πAJK, and so, by (B), πAJK = L/K. From
this it follows that some At belongs to ^ . For suppose that, for
each i, Rt = &{Aτ) Φ At. Then, for each i, there exists a^A^R^
Let a e πAt be such that a(i) = di for each i. But then a + K =
b + K for some beL. Let Sλ = {i\a(i) = b(i)}, S2 = {i\b(ϊ) 6i2J.
Both Si and S2 belong to i77. Since F is a filter, Sx Γ) S2 is not
empty. Thus there exists some jeS1f)S2. Consequently, aj — a(j) =
b(j)eRjt contrary to a5£R0. Hence some At must belong to ^ .
Thus &' is closed under ultraproducts, and so & is finitely ax-
iomatic.

It remains to show that S(&) is finitely axiomatic. Suppose
that {At\iel} is a family of rings in S(&), and that F is an
ultrafilter on I. Set A = πA,. Then ^(A^.) £ L/K, by (B). But
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since each AteS(^)f L = K, so &(AF) = (0). Thus AF e S ( ^ ) , and
so S(&) is closed under ultraproducts. To show that S(&)' is
closed under ultraproducts, suppose that the ultraproduct AF — πAJK
belongs to S ( ^ ) . Let R, == &(A%) for each i. Then R = πR,
belongs to &, by (A). Moreover, (R + K)/K = 22/(i2 Π if), and
R/(R n if) belongs to & by (Rl). But, by (R7), (R + JSΓ)/ίΓ belongs
to S(&) since (J? + K)/K is an ideal of A/K, and A/K=AFeS(έ0).
Thus (Λ + K)/Ke^ n S ( ^ ) , and so (Λ + JSΓJ/ΛΓ = (0) by (R6).
Hence ί? = πRt £ iΓ. One can easily show that this implies that
some JKy = (0), and consequently AseS(&). Therefore S(&)' is
also closed under ultraproducts. Thus S(&) is finitely axiomatic. •

III* Further results, comments, and questions* Suppose that
& is a radical class of rings that is closed under products. Sup-
pose further that {At \ i e 1} is a family of rings, and that F is a
filter on the set /. Let Ri = &(At) for each i e /, A = πAif and
i? = TΓ-Kί. Then ,^?(A) = ̂ (TΓA,) = πR, by the Lemma (b) in § II.
Let

K= {aeA\{i\a(i) = OJGJP7}

and

Then

RF = R/KB = Λ/(Λ n i θ = (Λ + K)IK = L/K S A^ ,

where, as before,

L = {aeA\{i\a{i)eRt}eF} .

Thus, if L/K is identified with its isomorphic copy RF, condition
(B) of the Main Theorem would read &(AF) Q &(A)F.

Every axiomatic radical class must be closed under products,
by the Lemma (e) in § II. Since the lower Baer radical, the
Levitzki radical, and the nil radical are not closed under products,
these radical classes for associative rings are not axiomatic. It also
appears unlikely that the Brown-McCoy radical class is closed under
products; see [10, pp. 56-57].

At the end of § I, it was stated that certain polynomial regu-
larities determine finitely axiomatic radical classes for associative
rings. The concept of a polynomial regularity is characterized in
reference [12]. A brief statement of the necessary definitions is
given below, with a slight change of notation.

Suppose that Pι, - ,pn are integral polynomials. For each
associative ring A define function &A as follows:
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&A(P>) = Pχ{a)Ap2{a)A Apn(a) ,

for every ae A. &A is a function from the ring A into the class
of all subgroups of the additive group of A. That function which
maps a ring A to the corresponding &A is called a polynomial
regularity. An element ae A is said to be &A-regular provided
α e ^ ( α ) . A is said to be &-regular provided each element of A
is ..-^-regular. The class of all ^-regular rings is a radical class
of rings, which is conveniently denoted by &. That is,

& = {AI a e ̂ i ( α ) for all a e A} .

«^ is said to be the radical class determined by the corresponding
polynomial regularity.

PROPOSITION 1. Suppose that & is the radical class of associa-
tive rings determined by a polynomial regularity. Then the follow-
ing statements are equivalent:

(1) & is axiomatic.
( 2 ) & is closed under products.

Proof. (1) implies (2) by the Lemma (e) of § II. Conversely,
suppose that & is closed under products. Then & is closed under
ultraproducts by the Lemma (d) of § II. To show that & is
axiomatic, it suffices [3, Corollary 6.5, relativized to the model
class of associative rings] to show that ^ ' , the class of all associa-
tive rings not belonging to ^?, is closed under ultrapowers. This
result is implied by the following lemma. •

LEMMA. Suppose that & is the radical class of associative
rings determined by a polynomial regularity. Then the class £%'
of all associative rings not belonging to & is closed under reduced
products.

Proof. Suppose that some reduced power U — A1 jK of the
ring A belongs to <%. Let F denote the underlying filter. Suppose
further that & has the following representation:

•^i(α) = P!(a)Ap2(a)A Apn(a) ,

for any aeA. Given ae A, let ae A1 be such that d(i) = a, for
all iel. Since Ue&, a + Ke&L(a + K). However,

.^Suia + K) = pλ(d + K)Up2(d + K)U Upn(d + K)

A'pM + κ]/κ.
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Thus, t h e r e exists a positive integer k, and fliff2i, •••,/»_!,, belong-

ing to A1, for i = 1, •••,&, such t h a t

6 ~ Σ Pι(a)fup2(&)fit fΛ-lltpn(a) e if .
ΐ l

Hence, the set

) - Σ Pi(a)fuPz(d)fΣ u

belongs to .F. Thus S is not empty. Let seS. Then

k

α(β) = Σ Pi(S)fltp2(a)f2i - - - fn-ltipn(a)(s) ,

or

α = Σ Pi(a)fu(s)p2(a)f2i(s) fn-ui(s)pn(a) ,

that is, α 6 ^ ( c ) . Consequently 4 e ^ . Thus, ^ ? ' is closed under
reduced powers, as claimed. •

The conjecture that the Brown-McCoy radical class is not closed
under products was stated earlier. In view of Proposition 1, this
conjecture is equivalent to saying that the Brown-McCoy radical
class is not axiomatic. A representation of the Brown-McCoy radical
class as a polynomial regularity is &A{a) = A(l + a) + A(l + a)A.
The element a of the ring A is .^-regular provided there exists
some positive integer fc, and 6, c^ rf{6 A (i = 1, •••,&), such that
α = δ(l + α) + Σ?=i ^(1 + Λ)d<β To say that & is axiomatic would
seem to force some upper bound on the numbers k for represent-
ing all such sums as above, so that & could have as a possible
defining axiom some sentence of the form Vxlyβy2 lyk(- •). This
remains conjecture. More generally, we could ask the following
question:

Question 1. If & is an axiomatic radical class determined by
a polynomial regularity, does representation of & have to take a
form &A(a) = Pi(ci)Ap2(a), using exactly two integral polynomials
px and p2Ί

It should be observed that each of the axiomatic radical classes
given at the end of § I can be defined by a single universal-existen-
tial axiom. In general, a universal-existential sentence is one that
has the form V% Vxm3y1 - ZyJP, where P does not contain
quantifiers; included is the case where universal quantifiers are
absent or existential quantifiers are absent, as in the case of
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Vx(x* = 0). A result in model theory [7, Theorem 2, p. 279] gives
the following. Suppose that & is an axiomatic class of rings
in j ^ % and that S is the set of all universal-existential ring
sentences that hold in &. Then & is exactly the class of all
rings in j ^ satisfying the sentences in S if and only if & is
closed under countable chain unions. A countable chain union of
rings consists of a union ring R = \J Rt9 where Rx £ R2 £ is a
countable chain of rings, and where each Rt is a subring of Ri+1.
Most of the known radical classes, whether axiomatic or not, are
closed under countable chain unions. For example, the nil radical,
the Brown-McCoy radical, the Jacobson radical, the von Neumann
regular radical, the Levitzki radical, and J?Γn radicals mentioned in
§ I are all closed under countable chain unions. Moreover, any
radical class for associative rings determined by a polynomial
regularity is closed under countable chain unions. (Thus, if such a
radical class were axiomatic, it would have some axiomatization
using universal-existential axioms, as suggested in the paragraph
preceding Question 1.) Other radical classes may not be closed under
countable chain unions. For example, is the lower Baer radical
class closed under countable chain unions? It seems reasonable to
ask whether or not every radical class of associative rings is closed
under countable chain unions, or, in the special case of axiomatic
radical classes, we have

Question 2. If & is an axiomatic radical class of associative
rings, is έ% closed under countable chain unions, and hence definable
by universal-existential axioms?

Another connection with model theory involves the closure of
a radical class under homomorphic images (Rl). An axiomatic model
class is closed under homomorphic images if and only if it can be
defined by positive sentences. A positive sentence is one which
results from the quantification of a formula that can be built up
using conjunction and disjunction but not negation. See [3, § VI. 5]
and the references there, or [7, § 45].

The Jacobson radical for associative rings has an axiomatic
semisimple class. Certain properties of the Jacobson radical are
stated as abstract hypotheses for Proposition 2.

PROPOSITION 2. Suppose that & is a radical class of associa-
tive rings defined by an axiom of the form Vxlyp(x, y) = 0, where
p(x, y) is a ring word formed using variables x and y and ring
operations. Suppose further that the following three conditions
hold:

(1) & is hereditary for left ideals. That is, if Ae& and
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L is a left ideal of A, then Le&.
(2) &(A) contains every left ideal of A that belongs to έ%.
(3) If aeA and A satisfies lyp(a, y) — 0 and Aa = (0), then

Z.a e &. Here Z.a = {n.a\neZ] and Z denotes the ring of integers.
Then S{&) is also axiomatic, and S(&) is defined by the

following axiom:

~ lx[x Φ 0 & 3yp(x, y) = 0 & Vzlylu(p(zx, y) = 0 & y = ux)] .

Proof. Let ^ denote the model class of associative rings
having the long formal sentence as defining axiom. Suppose that

, and let α e ^ ( A ) . Then A satisfies 2yp(a,y) = 0, since
&. But Aa is a left ideal of ^ ( A ) , so Aae& by condi-

tion (1). Thus A satisfies V332/3w(j>(sa?, #) = 0 & # = ux). Since
A 6 *S ,̂ it must be the case that a = 0. Hence ^ ( A ) = (0), so that
A e S(^?). Consequently, ^ S S ( ^ ) .

Now suppose that AίS^. Then there exists some aeA, aφQ,
such that Aae^g. By condition (2), Aa<^&{A). If Aα ^ (0),
then ^ ( A ) Φ (0), so A£ S(^P). If Aa = (0), then Z.ae^, by con-
dition (3). But in this case Z.a would be a left ideal of A since
A(Z.a) = (0). Thus Z.a Q &(A), by condition (2). Since Z.a Φ (0),

(0), so again A g S ( ^ ) . Consequently,

Question 3. For which other axiomatic radical classes do the
hypotheses of Proposition 2 hold? More generally, what conditions
on an axiomatic radical class suffice to imply that the correspond-
ing semisimple class is also axiomatic?

PROPOSITION 3. Suppose that & is a radical class of associa-
tive rings defined by an axiom of the form Vx3yp(x, y) = 0, where
p{x, y) is a ring word, and assume that S(&) is axiomatic. Then,
for every ultraproduct AF of associative rings &(AF) = &(A)F.

Proof. Suppose AF = πAJK is an ultraproduct. For each i, let
R. = ^?(A,). Then &(AF) £ L/K by the Main Theorem. Take any
x 6 L. Then H = {i \ x(ί) e Jf2J e F. If i e H, then x(i) e Rt and so
there exists VieRt such that p(xif yt) = 0. Define yeLhy y(i) = yt

if ieH, otherwise y(ί) = 0. But then {i\p(x, y){ϊ) — 0} 2 H and
therefore p(x,y)eK. Thus L/Ke^, and hence
Consequently &{AF) = LjK =

Proposition 3 remains true provided έ% is defined by any collec-
tion of axioms of the form Vxλ- -Vx^yr lynp(Xi, , »», 1/1, , 3/») =
0, and the proof is similar.
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The Jacobson radical and the V(P, N) radicals are equational
classes, or varieties in the sense of universal algebra. The V(P, N)
radicals are subvarieties of associative rings. The Jacobson radical
is not a subvariety of associative rings, but is an "extended"
variety subordinate to the variety of associative rings. The
Jacobson radical is an equational class over the operator domain
which extends the ring operations with a quasi-inverse operation,
and for which an axiom stating the existence of quasi-inverses of
elements is added to the usual ring axioms. It is shown in [5] that
not every hereditary radical class of associative rings that is closed
under products is necessarily a variety. Both the Jacobson radical
and the V(P, N) radicals are closed under equalizers of ring homo-
morphisms. That is, if / , g: R —> S are ring homomorphisms, where
R and S belong to the radical class t^?, then the equalizer subring
E = {r 6 R\fr = gr} belongs to &. It can be shown that if a
radical class & of associative rings is closed under products and
equalizers, then & is close under countable chain unions. Hence,
an axiomatic radical class that is closed under equalizers can be
defined by universal-existential axioms.
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