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Let H be a bialgebra over the commutative associative ring K with unit. 
This paper examines the concept of an H-radical for (associative) H-module 
algebras (also called algebras over H), based on the Amitsur-Kurosh general 
radical theory (Definitions 2, 3, Propositions l-5, below). In particular, a 
Jacobson-type H-radical $ is constructed as the upper H-radical generated 
by the left H-primitive H-module algebras (Definition 3, Theorem 1). 
Another H-radical of interest is JH , which consists of all associative H- 
module algebras whose underlying algebra is in J, the ordinary Jacobson 
radical for associative K-algebras (Propositions 2, 3). 

The main theorems on $ are in Section 2, where we show that if H is 
irreducible (also called filtered), and if H is a flat K-module, then (Theorem 2) 
for any H-module algebra A, $(A) is equal to the intersection of all left 
H-primitive ideals of A; (Theorem 3 and Corollary) $ is a strongly hereditary 
H-radical; (Theorem 4) %(A) = ](A # H) n A, where A # His the smash 
product of A with H; (Corollary 1 to Theorem 4) $(A) is the intersection 
of all right H-primitive ideals of A; (Theorem 5) $(A) contains all the left 
or right H-ideals of A which are in $; (Theorem 6) $ _C JH . An example 
is then provided showing that it is possible to have $(A) # JH(A) for a 
non-Artinian H-module algebra A, whereas Theorem 7 shows that j(A) = 
JH(A) if A is (left or right) Artinian. 

An example motivating this study is the case in which A is an (associative) 
K-algebra and H is the universal enveloping algebra of the Lie algebra of 
derivations of A. 

* This paper is part of the author’s doctoral dissertation under the direction of 
R. E. Block at the University of California, Riverside, December, 1971. 
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1. BASK DEFINITIONS AND RADICAL CONSTRUCTIONS 

Throughout this paper K will denote a commutative associative ring with 
unit. Algebras, bialgebras, and tensor products over base ring K are 
considered. The reader is referred to [6, p. 531 for the definition of a bialgebra 
H over K, and to [6, p. 1531 for the definition of an H-module algebra, except 
that we do not assume that H-module algebras are necessarily unital. 
Reference [6] defines these concepts in the case that K is a field, but the same 
definitions (as well as that of a coalgebra over K) make sense in the general 
case considered here. For this general approach we will use results from 
[3, Section 11. To be explicit, A is an H-module algebra if A is a K-algebra 
which is an H-module with the measuring condition written out as follows. 
If TV: H @ A -+ A is the measuring of A by H (or action of H on A), we will 
also write ~(h @ a) = h . a so that the measuring condition reads h . (ab) = 
&) (hu, . a)(& . 6), for all a, b E A, h E H. For more description of the 
summation notation in the last statement see [6, p. IO]. It is assumed that 
1, * a = a for all a E A, where lH is the unit of H. The measuring is called 
unital if A has a unit element 1 and if h . 1 = c(h)1 for all h E H, where E 
is the counit of H. Note that H-module algebras are the multiplicative 
objects in the monoidal category of H-modules. 

Let 2’ be the category of all associative H-module algebras, where H is a 
given bialgebra over K. The objects of & are all associative H-module 
algebras. The morphisms of Z are those algebra homomorphisms v: A --f B, 
A, B E 2, which are also H-module maps. Such a q will be called an H- 
homomorphism. An ideal I of an H-module algebra A is called an H-ideal 
if the action of H on A leaves 1 invariant. An H-ideal is the same thing as the 
kernel of an H-homomorphism. In particular, if I is an H-ideal of A, then I is 
the kernel of the natural H-homomorphism A --+ A/I, where A/I is an 
H-module algebra via h * (u + I) = (h . a) + I for all h E H, a E A. The 
sum and intersection of H-ideals are H ideals. The image v,(A) of an H- 
module algebra A by an H-homomorphism IJJ is naturally H-isomorphic 
to A/I for the H-ideal I = ker q~. 

The concept of a module for an A in the category X is made explicit by 
means of the following definition. 

DEFINITION 1. Suppose A is an H-module algebra and M is a left A- 
module. Then M is a left A, H-module provided M is also a unital left H- 
module (where H is thought of as an algebra), and 

h(am) = C VW .4 h(,)(m) 
(h) 

for all h E H, a E A, m EM, where dh = x(h) hcl) @ hc2) . If A has a unit, 
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then the A, H-module M is called unital if M is unital as a left A-module. 
Note that A, H-modules are the multiplicative actions in the monoidal 
category of H-modules. The A, H-module M is irreducible if AM # 0 and M 
has no proper nonzero A, H-submodule (i.e., no K-subspace closed under 
action by iz and H); in addition, if A has a unit then it is further required 
that M be unital. An H-module algebra A is left H-primitive provided A has 
a left, A, H-module M which is faithful as an A-module, and irreducible 
as an A, H-module. 

Suppose A is an H-module algebra. The smash product (or semidirect 
product) i2 # H of A by His the associative algebra consisting of the elements 
of A @ H (u @h written a #h) with products defined by 

(a # d(b # 4 = C 4m . b) # g(,,h. 
(9) 

If A has a unit IA and the measuring of H on A is unital, then IA # 1, is a 
unit for A # H. 

LEMMA 1. (i) If A is an H-module algebra such that either A does not 
have a unit, or A does have a unit but the measuring is not unital, then one can 
adjoin a unit to A to obtain an H-module algebra A, = A + K (direct us 
K-spaces) for which the measuring is unital, where the action of H on A is 
defined by 

h . (u + k) = h + a + c(h)& 

for all h E H, a E A, k E K. A is then embedded as an H-ideal in A, in the natural 
fashion. If M is an A, H-module, then M is a unitul A, , H-module under the 
action(a+k)m=am+kmforallu~A,k~K,m~M. 

(ii) If M is an A, H-module, then M is an A # H-module under the action 
(a # h)m = ah(m) for all a E A, h E H, m E M. If M is an irreducible left 
A, H-module, then M is an irreducible left A # H-module. 

(iii) If the measuring of H on A is unital, and if M is an (irreducible) 
left A # H-module, then M is an (irreducible) left A, H-module under the action 
am = (u # lH)m, h(m) = (lA # h)m for all a E A, h E H, m E M. 

Proof. The details of the proof are mostly straight-forward, being based 
on definitions. However, the last statement in (ii) needs comment. As stated, 
A need not have a unit. If A does have a unit, then the proof is easy. Assume 
then that A does not have a unit. As in (i) adjoin a unit to A to get A, = 
A + K. M is then an irreducible A, , H-module and an irreducible A, # H- 
module. Since A is a direct summand (as a K-space) of A, , A # H is 
embedded in A, # H in the natural fashion. Let S = {m E M: (A # H)m = 
O}. S is an A, # H-submodule of M, hence S = M or S = 0. If S = M, 
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then AM = 0, contrary to hypothesis. Thus S = 0. So for any nonzero 
m E M, (A # H)m = M. Now suppose N is a nonzero A # H-submodule 
of M. Then (A # H)N C N and (A # H)N > (A # H)n = M for any 
nonzero n E N, thus N = &I. It has been shown that M is an irreducible 
A # H-module. 

DEFINITION 2. A nonempty subset 5%’ of LZ? is an H-radical provided 

(a) If A E %?‘, then v(A) E W for every H-homomorphism y of A. 

(b) If A E Z’, A $ W, then there exists a nonzero H-homomorphism 
q of A such that q(A) has no nonzero H-ideals in &?. 

The following notation will be useful. For X C &‘, 

G(X) = {A E Z : A has no nonzero H-ideal in X}, 

‘%(X) = (A E Z; A has no nonzero H-homomorphic image in X}. 

Given an H-radical &’ and A E 2, A is said to be W-radical provided A E 93 
and A is said to be W-semisimple provided A E E(W). The H-ideal 

W(A) = C{I:I is an H-ideal of A, and I E W} 

is called the W-radical of A. For each A E 2, 9?(A) E 9, A/9(A) E G(W), 
and B(A) = n {I : I is an H-ideal of A, and A/I E G(g)}. 

PROPOSITION 1. Suppose Y _C 2 satisjes the following condition: A E 9’ 
implies every nonzero H-ideal of A has a nonzero H-homomorphic image in 9. 
Then (i) ‘8(Y) is an H-radical; (ii) G(%(9)) is the minimal semisimple class in 
% containing 9’; (iii) if&! is an H-radicalfor which G(9) >_ 9, then B _C ‘%2(Y). 

Because of (iii) %(Y’) is called the upper H-radical generated by 9. 
Generally, the proofs of the propositions in this section are similar to known 
proofs in general radical theory, or are otherwise straightforward. In 
particular, the proof of Proposition 1 resembles [4, Lemma 3, p. 61. 

We wish to apply Proposition 1 to the class 9’ of all left H-primitive 
H-module algebras. The condition in the hypothesis of Proposition 2 is 
verified in Theorem 1 below. 

THEOREM 1. If A is left H-primitive and I is a nonzero H-ideal of A, then 
I is left H-primitive. 

Proof. Suppose M is an irreducible left A, H-module which is faithful 
as an A-module. Then M is an I, H-module which is faithful as an I-module. 
Suppose N is an I, H-submodule of M. Let C denote the K-subspace of 
A # H generated by {x # h: x E I, h E H}. Then C is an ideal of A # H. 
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Thus CN is an A # H-submodule of M, whereas M is an irreducible A # H- 
module, using Lemma l(ii). Hence CN = 0 or CN = M. If CN = M, 
then N = M, and the proof is completed. On the other hand, if CN = 0, 
let S = {m E M, Cm = O}. Now S > N and S is an A # H-submodule of 
M, so S = 0 or S = M. If S = 0, then N = 0, and the proof is again 
completed. If S = M, then CM = 0, so IM = 0, which would imply 
I = 0 since M is faithful as an A-module. This case is therefore not possible 
and so I is left H-primitive. 

Theorem 1 justifies the use of Proposition 1 to form the upper H-radical 
$ = 93(Y), where Y is the class of all left H-primitive H-moduIe algebras. 
More can be proved about $, and this is done in Section 2, if one assumes 
further conditions on H. The conditions of interest in this paper are stated 
explicitly, and explained at the end of this section and the beginning of 
Section 2. 

Another H-radical of interest is obtained from the (ordinary) Jacobson 
radical J for associative rings (or K-algebras). The general procedure is 
spelled out in the following proposition. 

PROPOSITION 2. Assume that p is an ordinary radical for associative 
h7-algebras. Then pH , the class of all H-module algebras whose undercving 
a(qebra is in p, is an H-radical. 

Hence JH is an H-radical. Section 2 gives the relationships, under appro- 
priate conditions, among $(A), JH(A), and J(A #H), where A is an 
H-module algebra. Structure theorems for A/J,(A) where H = @(der A), 
with certain finiteness conditions, can be found in [I, p. 4521. 

DEFINITION 3. The H-radical 9%’ is a hereditary H-radical provided A E 9? 
implies I E B? for every H-ideal I of A. 9 is strongly hereditary provided 
%(I) = @(A) n I for every H-ideal I of A. 

As usual, every strongly hereditary H-radical is hereditary. If B is a 
hereditary H-radical then 9’(A) n I C 9?(I) for all H-ideals I of A. If W is a 
strongly hereditary H-radical and A E G(g), then I E G(R) for every H-ideal 
I of A. 

PROPOSITION 3. Suppose p is an ordinary radical for associative K-algebras. 
If p is hereditary, then pH is a hereditary H-radical and 

PIT(A) = c V: I is an H-ideal of A, and I C p(A)}. 

If p is strongly hereditary, then pH is a strongly hereditary H-radical. 

481/34/2-3 
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As an immediate application of Proposition 3, one gets that JH is a strongly 
hereditary H-radical. 

PROPOSITION 4. Suppose g is a hereditary H-radical such that all A E X 
with A” = 0 are in 9. Then 9 is a strongly hereditary H-radical. 

Proof. Let I be an H-ideal of A E %. It suffices to show that B(I) is an 
H-ideal of A. Set R = %(I). Then (AR + R)” C R and hence (AR + R)/ 
R E 9 and (AR + R)/R is an H-ideal of I/R E G(9). Hence (AR + R)/R = 0, 
i.e., AR C R. Similarly RA C R and thus R = B(I) is an H-ideal of A. 

For ordinary radical theory, Proposition 4 can be proved without the 
assumption that &Y contains all A such that A2 = 0. Whether or not this 
assumption can be deleted for hereditary H-radicals is left open in this 
paper. In Section 2, Proposition 4 will be applied to show that & is a strongly 
hereditary H-radical. 

PROPOSITION 5. Suppose Y C 2’ satisfies the condition in the hypothesis 
of Proposition 1, and let 9! = ‘3(Y). Suppose further that for all A E 2: 
(i) If I is a nonxero H-ideal of A and I E ,4”, then there exists an H-ideal B of A 
such that A/B E .Y and I $ B. (ii) A2 = 0 implies A $9’. Then, for every 

AEZ, 

%(A) = n (I: I is an H-ideal of A, and A/I E Y>. 

A similar result is that if p is a hereditary ordinary upper radical generated 
by a class 0, and if p(A) = 0 {I : I is an ideal of A, and A/I E a>, then 
p,,(A) = n {IH : A/I E a}, where IH is the sum of all the H-ideals of A 
contained in I. This was used for JH in [l, p. 4521, using H = %(der A), 
u equal to the set of primitive associative rings. 

Proposition 5 resembles [4, Lemma 80, p. 1391, which is concerned with 
the topic of special radicals for associative rings. Under appropriate 
conditions, Proposition 5 will be applied to f = s(Y), Y the left H- 
primitive H-module algebras, in Theorem 2 in Section 2. 

DEFINITION 4. H is an irreducible bialgebra over K provided there exists 
a denumerable sequence of K-subspaces Hi of H, H,, _C H1 C H, C ... C H 
where H, = KIH, H = u Hi , H,H, C H,+j and AH, CC:=,, Im(H, @ H,-i). 
Here Im(Hi 0 H& denotes the image of the canonical map of Hi @ H,.+. 
into H @ H. 

This definition of irreducible bialgebra is the same as that of filtered 
bialgebra in [3, p. IO], and is equivalent to H being irreducible as a coalgebra 
in the sense of [7] where K is a field. 
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The following are important examples of irreducible bialgebras over K. 

(1) K a field and H irreducible as a coalgebra. 

(2) K not necessarily a field, but H generated as an algebra by P(H) = 
{h E H : dk = h @ 1 + 1 oh}, the “p rimitive” elements of H. One easily 
checks in this case that a filtration is provided by setting H, = CT=, P(H)i, 
71 = 0, 1, 2 )...) where, by convention P(H)O = Kl, . 

(3) H = a(L), the universal enveloping algebra of the Lie algebra L. 
This is a special case of (2). 

If {Hi} is a filtration of the bialgebra H over K, and if we set H,~t = 
H, n (ker E), H+ = H n (ker E), then one has the following decompositions: 

where the sum is direct as K-spaces. As is shown in [3, p. lo], if H 
is irreducible and h E Hn+, then dh = h @ 1 + 1 @ h + y for some 
y E CyLi Im(H, 0 H,-J. 

Lemma 2 below proves one fact about irreducible bialgebras that will be 
useful in Section 2. 

LEMMA 2. Assume that His irreducible and that A is an H-module algebra. 
Then the annihilator in A of a left A, H-module M is an H-ideal of A. 

Proof. Let I = {a E A : aM = 01, an ideal of A. It needs to be shown 
that a E I implies h * a E I for all h E H. Writing, as above H = H+ f Kl, , 
one can assume h E H+ = (Vito Hi+. This makes h an element of some H,+. 
If n = 0, then h = 0 and h . a = 0 . a = 0 is in I. The induction assumption 
is that g . a is in I for all g in Hi+ and for all i less than n. Since H is irreducible 
one can write 

where gi , fi belong to subspaces of index less than n. Then for any nz E M, 

(h . a)m = h(am) - ah(m) - C (gi . a) fi(m) 

=o-o-0=0, 

since aM = 0 and gi . a E I for all i by the induction assumption. Therefore, 
h * a E 1, as claimed. 

As a slight generalization note that essentially the same argument shows 
that if N is an A, H-submodule of M then {a E M : aM C N} is also an 
H-ideal of A. Also, analogous right-handed versions for the above are true. 
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2. MAIN THEOREMS ONE, JH, j(A#H) 

The following two basic assumptions on the bialgebra H over K occur 
frequently in this section: 

(1) H is irreducible, 

(2) H is a flat K-module. 

For example, if K is a field then H is flat; if K = 2 then His flat if and only 
if H is torsion-free. As a consequence, if A is an associative H-module 
algebra, and if S is an H-invariant subalgebra of A, then S # His embedded 
injectively in A # H. Therefore, if I is an H-ideal of A, one can naturally 
consider I # H as an ideal of A # H, and it is for the sake of this type of 
application that we assume that H is flat. 

Theorem 2 states that f(A) is the intersection of the left H-primitive 
ideals of A. As expected, an H-ideal P of A is defined to be a left H-primitive 
ideal provided A/P is left H-primitive; i.e., P is the annihilator in A of an 
irreducible left A, H-module. (Lemma 2 shows immediately that every 
such annihilator is an H-ideal of A.) 

THEOREM 2. Assume that H is an irreducible bialgebra over K, and that H 
is a flat K-module. Then for an H-module algebra A, 

$(A) = n {P: P is an H-ideal of A and A/P is left H-primitive). 

The following lemma establishes one of the sufficient conditions (see 
Proposition 5). 

LEMMA 3. Assume the hypotheses on H in the statement of Theorem 2. 
Suppose I is a nonxero H-ideal of the H-module algebra A, and that I is itself 
a left H-primitive H-module algebra. Then there exists an H-ideal B of A such 
that A/B is left H-primitive and I $ B. 

Proof. Let M be an irreducible left I, H-module, faithful as an I-module. 
Then M is an irreducible left I # H-module by Lemma l(ii). As in the proof 
of Lemma l(ii), one has that for any nonzero n E M, (I # H)n = M. Work 
with some such fixed generator n. Since His a flat K-module, consider I # H 
as an ideal of A # H and make M into an A # H-module by defining 
u(vn) = (uv)n for all u E A # H, v E I # H. To show that this action is 
well-defined it must be shown that if an = 0, then (uv)n = 0. One has the 

conventional calculation, assuming on = 0 : 

(I # HW44 = ((I # fWv))n = ((I# Wu)(4 = 0. 
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As before, anything annihilated by I # H is zero, so (uw)n = 0. Now make 
M into an A-module by setting am = (a # 1)m for any m E M, a E A. If a is 
in I, then (“new action”) am = (a # 1)m = am (“old action”), giving the 
correct module action of I on M. Thus any A-submodule of M is an I-sub- 
module of M. Once it is shown that M is an A, H-module, it follows that M 
is an irreducible A, H-module. So we claim that 

for allhEH, aEA, mcM. But 

am=(a#I)m-(a#I)[(~x,#g,)n] 

= k (a # 1)Kxi # g&l 

for some x6 E 1, gi E H and 

&4 = i h((a # 1&4 #&I). 
i=l 

So one needs show (t) when m has the form m = (x # g)n, x E I, We have 

44 = Ma # lN(x #M) = Wx #dn) 

= &x) g(n)) since ax EI 

= c (h(l) * (4) h(2)&) 
w 

= 1 (h(l) * a)(h) - 4 b&), 
(h) 

where here and below the fact that &) dho) @ hcz) = Cth) hg) @ dhcz) (i.e., 
coassociativity) is used, which justifies the use of three subscripts as displayed. 
On the other hand, 

c (h(l) * 4 k&4 = C (41) . 4 hdx #gh) 
(h) (h) 

= C (h(l) * 4 b(xgW) 
(h) 

= c (h(l) . 4@(,, .x1 4d4 
(h) 

and the two end results are equal. So M is indeed an A, H-module. 
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Now let B = (a E A : aM = O}. B is an H-ideal of A since H is irre- 
ducible, by Lemma 2. It must be the case that B n I = 0 since BM = 0 
and M is a faithful I-module (in fact B = {a E A : al = O}). Also, M is a 
faithful A/B-module, and an irreducible A/B, H-module via (u + B)m = am. 
Thus A/B is left H-primitive, and I g B. This finishes the lemma. 

Proof of Theorem 2. In addition to Lemma 3 all one needs to observe 
is that if A is an H-module algebra with A2 = 0, then A cannot be left 
H-primitive, since AM would be zero whenever M was an irreducible A, H- 
module, a contradiction. Proposition 5 is now applied to finish the proof. 

An H-module algebra A is H-simple provided the only H-ideals of A are 0 
and A, and A2 # 0. 

COROLLARY. An H-simple algebra A is $-semisimple if and only if A is 
left H-primitive. 

Proof. If A is H-primitive then A is $-semisimple. If A is H-simple and 
H-semisimple, then A has an irreducible left A, H-module M such that 
AM # 0. But the annihilator of M is an H-ideal of A, not equal to A, and 
hence is zero, so A is left H-primitive. 

THEOREM 3. Assume that H is an irreducible biulgebra over K, and that 
H is flat as a K-module. Then f is a hereditary H-radical. 

Proof. It must be shown that if A E f and if I is an H-ideal of A, then 
I E f. By Theorem 2, A E f, i.e., A = $(A), means that A has no 
irreducible left A, H-modules. We show that I also has no irreducible left 
1, H-modules, in which case I = y(1), so I E f. Suppose that M is an 
irreducible left I, H-module, hence IM # 0. Lemma 3 shows how to make 
M into an irreducible left A, H-module such that the action of A on M when 
restricted to I gives the original action of 1 on M. (Here it is noted that to 
make M into an A, H-module requires only IM # 0, and not necessarily 
that M be a faithful I-module.) But by the assumption about A (that it has 
no irreducible left A, H-modules) this gives a contradiction. Therefore 
1 = y(1) and I E f, so that f is hereditary. 

ES a strongly hereditary H-radical. That is, for an H-module 
a~~~boAL~n~ an’H:ideal I of A, 

J+-(I) = A-4 n I. 
Proof. This follows from Theorem 3 and Proposition 4 since if A is an 

H-module algebra such that A2 = 0, then A E $. 
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In what follows, regard A as a subalgebra of A # H via the canonical 
embedding a -+ a # 1. 

THEOREM 4. Assume that H is an irreducible bialgebra over K and that H 
is a flat K-module. Then $(A) = J(A # H) CI A. 

Proof. The theorem can be proved if one first assumes that the measuring 
on A is unital (hence that A has a unit), and then remove this restriction. 
Assuming then that the measuring is unital, first observe that the irreducible 
left A, H-modules are exactly the irreducible left A # H-modules by (ii) 
and (iii) of Lemma 1. Applying the constructions in (ii) and (iii), first one, 
then the other, preserves the module action with which one starts. Now 
J(iz # H) is the intersection of the annihilators of irreducible left A # H- 
modules, and f(A) is the intersection of the annihilators of irreducible 
left A, H-modules. These annihilators correspond as follows. Consider 
P =-: (a E A : aM = 0}, where M is an irreducible left A, H-module. 
Consider M as an irreducible left A # H-module as in (ii) of Lemma 1. 
Then (P # 1)M = Pi(m) = PM = 0. On the other hand, if (u # 1)M = 0, 
then al(M) = aM = 0, and so a E P. So if Q = {U E A # H : uM = 0}, 
then Q r\ A = P. These arguments are reversible, using (iii) of Lemma 1 
this time. Hence n (Q n A) = n P, where Q ranges over the left primitive 
ideals of ,4 # H, P ranges over the left H-primitive ideals of A. Hence 

J(A # ff) n A = AA). 
If the measuring is not unital, then use A, , constructed in (i) of Lemma 1. 

Since f is a strongly hereditary H-radical and A is an H-ideal of A, , we have 

A4 = AAd n A 

= (](A, # H) n A,) n A by the above, 

= JG%#H)nA 

=MA,#HPA#HPA 
= J(A#H)nA 

since J is a strongly hereditary ordinary radical. This establishes the theorem 
in general. 

COROLLARY 1. $(A) is the intersection of all right H-primitive ideals 
ofA. 

The definition of right H-primitive is the obvious one. The corollary 
follows easily from the theorem, since J is left or right definable, and makes f 
symmetrically definable as either the upper H-radical generated by the left 
H-primitive algebras or as the upper H-radical generated by the right 
H-primitive algebras. 
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COROLLARY 2. If A E f, then A # HE J. 

Proof If A E $, then in fact A does not have a unit, since otherwise 

lA#lueJ(A#H), h’h w ic is impossible. However, adjoin a unit to A as in 
(i) of Lemma 1, obtaining A, , so that the following argument can be given. 
Since A E f, A = $(A) = J(A # H) n A, so that A # 1 _C J(A # H) = 
J(A, # H) n (A # H). H ence A#H=(A#l)(l#H)C J(A,#H)n 
(A#H)= J(A#H)andsoA#H== J(A#H)orA#HEJ. 

THEOREM 5. Assume that H is an irreducible bialgebra over K, and that 
H is a jat K-module. Then $(A) contains all the left (or right) H-ideals of A 
which are in $, 

Proof. Assume L E f is a left H-ideal of A. Then since L E f, L # H E J 
by Corollary 2 above, and L # H is a left ideal of A # H, hence L # H C 
J(A # H). Thus, L # 1 _C J(A # H) n (A # 1) = $(A) # 1 and so L C 
$(A), as required. Similar argument applies to the right H-ideals. 

The next theorem gives the general relationship between $ and Ju . 

THEOREM 6. Assume that H is an irreducible bialgebra over K, and that 
H is a flat K-module. Then J(A # H) n A C ]h(A), hence f C Jn and 
AA) # II _C J(A # H). 

LEMMA 4. Assume the hypotheses of Theorem 6. If S is an ideal of A # H, 
then S n A is an H-ideal of A. 

Proof. We show that if a # 1 is in S n (A # 1), then (h . a) # 1 is in 
S n (A # 1) for all h E H. Write H = H+ + Kl, , H+ = uzo Hi+. It 
suffices to show (h . a) # 1 E Sn (A# 1) for all h E H+. If h E Ho+ = 
K+ = 0, then h = 0 and 0 # 1 = 0 is in S n (A # 1). So assume the 
conclusion is true for all g E H, + for all j less than rz, and let h be in H,+. , 
Then 

where gi , fi belong to subspaces of index less than n. Then (1 # h)(a # 1) = 

&.a)#1 +a#h+C(gi.a)#fi, h h w ic is in S since a # 1 E S and S 
is an ideal of A # H. Also, each (gi . a) # 1 E S by the induction assumption, 
so((gi*a)#l)(l#fi) =(g,.a)#fi~S.Also(a#l)(l#h) =a#h~S. 
Going back to the original expression for (1 # h)(a # l), we get (h . a) # 1 E 
S n A, finishing the lemma. 

LEMMA 5. Assume the hypotheses of Theorem 6. Suppose the measuring 
of H on A is unital. If b # 1 is right invertible in A # H, then b is right invertible 
in A. 
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Proof. Suppose b # 1 has right inverse Cy=, ci # hi. Then (b # 1) 

(C ci # hi) = 1 # 1 or Cbci#hi = l#l. Now A is a unital A#H- 
module via the basic action (a # h)x = a(h . x), for all a, x E A, h E H. Apply 
both sides of C bci # hi = 1 # 1 to lA . Then C b&hi) = 1, , i.e., 

b(C G4h)) = 1.4 7 which shows b is right invertible in A. 

Proof of Theorem 6. First assume that the measuring is unital. Since 
](A # H) is an ideal of A # H, Lemma 4 shows that J(A # H) r\ A is an 
H-ideal of A. Every element a # 1 in ](A # H) n A is right-quasi-regular, 
that is 1 # 1 + a # 1 = (1 + a) # 1 has a right inverse in A # H. Hence, 
by Lemma 5, 1 + a is right invertible in A. Thus J(A # H) n A is a right- 
quasi-regular H-ideal of A, and so is contained in JH(A). This proves the 
theorem when the measuring is unital. If the measuring is not unital, consider 
A, . By the corollary to Theorem 3, #(A) = $(A,) n A _C JH(AI) n A = 
JH(A) since JH is a strongly hereditary H-radical. This gives the theorem 
for general A. The other conclusions in Theorem 6 now follow 
easily. 

The question naturally arises as to whether Jx _C $. It is shown in Theorem 
7 below that this is the case for (left or right) Artinian algebras, but first a non- 
Artinian counterexample is given. 

ExumpZe with f(A) # JH(A). Let R denote the real field and let A = 
R(x, y) be the algebra of all formal power series in commuting indeterminants 
x and y. Let d = d/dx and let H be the bialgebra over R generated by d; 
a typical element of H is a finite polynomial in powers of d with coefficients 
in R. The Jacobson radical of A, J(A), consists of all power series with zero 
constant term, and J(A) contains the H-ideal B of A consisting of all power 
series of the form p, + p,x + ... + pix + ..., where each pi is a power 
series in y with zero constant term. Now B f j&A) and y E B, so y E jH(A). 
We propose to show y # d is not in J(A # H), verifying the example. The 
reason this will suffice is the following. If JH(A) = J&A) # 1 C $(A) = 
J(A # H) n A, then JH(A) # H must also be contained in J(A # H), since 
the latter is an ideal of A # H. But y # d E JH(A) # H and y # d $ ](A # H), 
a contradiction. 

Now every element u of A # H can be expressed in the form 
u = Cr=, ai # di, ui E A, for some nonnegative integer n. Suppose y # d 
were in J(A # H). Then 1 # 1 + y # d must have a left inverse U: 

u(l#l+y#d)= i .#di (l#l+y#d)=l#l. 
L”t 1 

This equation can be solved for the ui by applying both sides to elements 
1, x, x2,. . . ) of A, since A is an A # H-module. For example, applying both 
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sides to 1, one gets a, = 1; applying both sides to x, one gets 
asx + a, y + a, = x or a, = -y, etc. Summing up, 

u = 1 # 1 -y#d+yy2#d2-y3#d3+ ... &y”#d”. 

However, 

u(l#l+y#d)=u+y#d-yy2#d2+y3#d3-.qyn#dn 
+ yn+l # dn+l 

= 1 # 1 &yynfl#dn+l 

#l#l 

since yn+l # d”+l # 0. Hence one concludes that A # H does not contain 
a left-quasi-inverse for y # d, and so JH(A) g &(A). 

THEOREM 7. Assume that H is an irreducible bialgebra over K, and that H 
is a JEat K-module. If JH(A) is nilpotent, then JH(A) = $(A). Hence if A is 
(left or right) Artinian, then J,(A) = &(A). 

Proof. This follows from the fact that if T is an H-ideal of A, then 
(T # H)” _C Tn # H. Applying this to T = JH(A), where T” = 0 some m, 
one gets (J&A) # H)” = 0. Now J&A) # H is an ideal of A # H, so 

JIM) # H c J@ # ffh or JH(A) C ](A #H) n A = $(A). 
It is easy to show that for left Artinian H-module algebras, A is left H- 

primitive if and only if A has an irreducible left module, the annihilator of 
which contains no nonzero H-ideal of A. Similarly, for left Artinian H-module 
algebras, a left H-primitive ideal I is the largest H-ideal contained in some 
primitive ideal. (Statements in this paragraph do not require any of the 
restrictions on H.) 

One would like answers to the following questions, which have been left 
open here: 

1. When is j(A) # H = J(A # H) ? Theorem 6 says only that 

2-W # H 2 J(A # W 
2. Is J(A # H) C J,&A) # H? Again, Theorem 6 says only that 

J(A #HI n A C J&O 
Whereas this paper concerns itself with the abstract theory of the H-radical 

f, a paper by R. E. Block [2] wr give structure theorems for certain H- ‘11 
primitive algebras with finiteness conditions (either on the algebra or the 
module), carrying further the work in [l]. 
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