
9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 1 of 16https://www.infoq.com/articles/java-virtual-threads/

QCon Plus (Nov 29 - Dec 9): Make the right decisions by uncovering emerging software
trends

Virtual Threads: New Foundations for
High-Scale Java Applications

Key Takeaways

 Virtual threads are a lightweight implementation of Java threads, delivered as a
preview feature in Java 19.
 Virtual threads dramatically reduce the effort of writing, maintaining, and observing
high-throughput concurrent applications.
 Virtual threads breathe new life into the familiar thread-per-request style of
programming, allowing it to scale with near-optimal hardware utilization.
 Virtual threads are fully compatible with the existing `Thread` API, so existing
applications and libraries can support them with minimal change.
 Virtual threads support the existing debugging and profiling interfaces, enabling easy
troubleshooting, debugging, and profiling of virtual threads with existing tools and
techniques.

Java 19 brings the first preview of virtual threads to the Java platform; this is the main
deliverable of OpenJDKs Project Loom. This is one of the biggest changes to come to Java in
a long time -- and at the same time, is an almost imperceptible change. Virtual threads
fundamentally change how the Java runtime interacts with the underlying operating system,
eliminating significant impediments to scalability -- but change relatively little about how we
build and maintain concurrent programs. There is almost zero new API surface, and virtual
threads behave almost exactly like the threads we already know. Indeed, to use virtual
threads effectively, there is more unlearning than learning to be done.

Threads

https://plus.qconferences.com/?utm_source=infoq&utm_medium=listing&utm_campaign=yellowbarqplus1122
https://openjdk.java.net/jeps/12
https://openjdk.java.net/jeps/425
https://wiki.openjdk.org/display/loom/Main

9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 2 of 16https://www.infoq.com/articles/java-virtual-threads/

Threads are foundational in Java. When we run a Java program, its main method is invoked
as the first call frame of the "main" thread, which is created by the Java launcher. When one
method calls another, the callee runs on the same thread as the caller, and where to return to
is recorded on the threads stack. When a method uses local variables, they are stored in that
methods call frame on the threads stack. When something goes wrong, we can reconstruct
the context of how we got to the current point -- a stack trace -- by walking the current
threads stack. Threads give us so many things we take for granted every day: sequential
control flow, local variables, exception handling, single-step debugging, and profiling.
Threads are also the basic unit of scheduling in Java programs; when a thread blocks waiting
for a storage device, network connection, or a lock, the thread is descheduled so another
thread can run on that CPU. Java was the first mainstream language to feature integrated
support for thread-based concurrency, including a cross-platform memory model; threads
are foundational to Javas model of concurrency.

Despite all this, threads often get a bad reputation, because most developers experience with
threads is in trying to implement or debug shared-state concurrency. Indeed, shared-state
concurrency -- often referred to as "programming with threads and locks" -- can be difficult.
Unlike many other aspects of programming on the Java platform, the answers are not all to
be found in the language specification or API documentation; writing safe, performant
concurrent code that manages shared mutable state requires understanding subtle concepts
like memory visibility, and a great deal of discipline. (If it were easier, the authors own Java
Concurrency in Practice would not weigh in at almost 400 pages.)

Despite the legitimate apprehension that developers have when approaching concurrency, it
is easy to forget that the other 99% of the time, threads are quietly and reliably making our
lives much easier, giving us exception handling with informative stack traces, serviceability
tools that let us observe what is going on in each thread, remote debugging, and the illusion
of sequentiality that makes our code easier to reason about.

Platform threads

https://jcip.net/

9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 3 of 16https://www.infoq.com/articles/java-virtual-threads/

Java achieved write-once, run-anywhere for concurrent programs by ensuring that the
language and APIs provided a complete, portable abstraction for threads, inter-thread
coordination mechanisms, and a memory model that gives predictable semantics to the
effects of threads on memory, that could be efficiently mapped to a number of different
underlying implementations.

Most JVM implementations today implement Java threads as thin wrappers around
operating system threads; well call these heavyweight, OS-managed threads platform
threads. This isnt required -- in fact, Javas threading model predates widespread OS support
for threads -- but because modern OSes now have good support for threads (in most OSes
today, the thread is the basic unit of scheduling), there are good reasons to lean on the
underlying platform threads. But this reliance on OS threads has a downside: because of how
most OSes implement threads, thread creation is relatively expensive and resource-heavy.
This implicitly places a practical limit on how many we can create, which in turn has
consequences for how we use threads in our programs.

Operating systems typically allocate thread stacks as monolithic blocks of memory at thread
creation time that cannot be resized later. This means that threads carry with them
megabyte-scale chunks of memory to manage the native and Java call stacks. Stack size can
be tuned both with command-line switches and Thread constructors, but tuning is risky in
both directions. If stacks are overprovisioned, we will use even more memory; if they are
underprovisioned, we risk StackOverflowException if the wrong code is called at the wrong
time. We generally lean towards overprovisioning thread stacks as being the lesser of evils,
but the result is a relatively low limit on how many concurrent threads we can have for a
given amount of memory.

John Fisher

9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 4 of 16https://www.infoq.com/articles/java-virtual-threads/

Limiting how many threads we can create is problematic because the simplest approach to
building server applications is the thread-per-task approach: assign each incoming request
to a single thread for the lifetime of the task.
Aligning the applications unit of concurrency (the task) with the platforms (the thread) in
this way maximizes ease of development, debugging, and maintenance, leaning on all the
benefits that threads invisibly give us, especially that all-important illusion of sequentiality.
It usually requires little awareness of concurrency (other than configuring a thread pool for
request handlers) because most requests are independent of each other. Unfortunately, as
programs scale, this approach is on a collision course with the memory characteristics of
platform threads. Thread-per-task scales well enough for moderate-scale applications -- we
can easily service 1000 concurrent requests -- but we will not be able to service 1M
concurrent requests using the same technique, even if the hardware has adequate CPU
capacity and IO bandwidth.

Until now, Java developers who wanted to service large volumes of concurrent requests had
several bad choices: constrain how code is written so it can use substantially smaller stack
sizes (which usually means giving up on most third-party libraries), throw more hardware at
the problem, or switch to an "async" or "reactive" style of programming. While the "async"
model has had some popularity recently, it means programming in a highly constrained style
which requires us to give up many of the benefits that threads give us, such as readable stack
traces, debugging, and observability. Due to the design patterns employed by most async
libraries, it also means giving up many of the benefits the Java language gives us as well,
because async libraries essentially become rigid domain-specific languages that want to
manage the entirety of the computation. This sacrifices many of the things that make
programming in Java productive.

Virtual threads

Virtual threads are an alternative implementation of java.lang.Thread which store their
stack frames in Javas garbage-collected heap rather than in monolithic blocks of memory
allocated by the operating system. We dont have to guess how much stack space a thread
might need, or make a one-size-fits-all estimate for all threads; the memory footprint for a
virtual thread starts out at only a few hundred bytes, and is expanded and shrunk
automatically as the call stack expands and shrinks.

John Fisher

John Fisher

John Fisher

9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 5 of 16https://www.infoq.com/articles/java-virtual-threads/

The operating system only knows about platform threads, which remain the unit of
scheduling. To run code in a virtual thread, the Java runtime arranges for it to run by
mounting it on some platform thread, called a carrier thread. Mounting a virtual thread
means temporarily copying the needed stack frames from the heap to the stack of the carrier
thread, and borrowing the carriers stack while it is mounted.

When code running in a virtual thread would otherwise block for IO, locking, or other
resource availability, it can be unmounted from the carrier thread, and any modified stack
frames copied are back to the heap, freeing the carrier thread for something else (such as
running another virtual thread.) Nearly all blocking points in the JDK have been adapted so
that when encountering a blocking operation on a virtual thread, the virtual thread is
unmounted from its carrier instead of blocking.

Mounting and unmounting a virtual thread on a carrier thread is an implementation detail
that is entirely invisible to Java code. Java code cannot observe the identity of the current
carrier (calling Thread::currentThread always returns the virtual thread); ThreadLocal
values of the carrier thread are not visible to a mounted virtual thread; the stack frames of
the carrier do not show up in exceptions or thread dumps for the virtual thread. During the
virtual threads lifetime, it may run on many different carrier threads, but anything
depending on thread identity, such as locking, will see a consistent picture of what thread it
is running on.

Virtual threads are so-named because they share characteristics with virtual memory. With
virtual memory, applications have the illusion that they have access to the entire memory
address space, not limited by the available physical memory. The hardware completes this
illusion by temporarily mapping plentiful virtual memory to scarce physical memory as
needed, and when some other virtual page needs that physical memory, the old contents are
first paged out to disk. Similarly, virtual threads are cheap and plentiful, and share the
scarce and expensive platform threads as needed, and inactive virtual thread stacks are
"paged" out to the heap.

John Fisher

John Fisher

John Fisher

John Fisher

9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 6 of 16https://www.infoq.com/articles/java-virtual-threads/

Virtual threads have relatively little new API surface. There are several new methods for
creating virtual threads (e.g., Thread::ofVirtual), but after creation, they are ordinary
Thread objects and behave like the threads we already know. Existing APIs such as
Thread::currentThread, ThreadLocal, interruption, stack walking, etc, work exactly the same
on virtual threads as on platform threads, which means we can run existing code confidently
on virtual threads.

The following example illustrates using virtual threads to concurrently fetch two URLs and
aggregate their results as part of handling a request. It creates an ExecutorService that runs
each task in a new virtual thread, submits two tasks to it, and waits for the results.
ExecutorService has been retrofitted to implement AutoCloseable, so it can be used with
try-with-resources, and the close method shuts down the executor and waits for tasks to
complete.

void handle(Request request, Response response) {
 var url1 = ...
 var url2 = ...

 try (var executor = Executors.newVirtualThreadPerTaskExecutor())
 var future1 = executor.submit(() -> fetchURL(url1));
 var future2 = executor.submit(() -> fetchURL(url2));
 response.send(future1.get() + future2.get());
 } catch (ExecutionException | InterruptedException e) {
 response.fail(e);
 }
}

String fetchURL(URL url) throws IOException {
 try (var in = url.openStream()) {
 return new String(in.readAllBytes(), StandardCharsets.UTF_8)
 }
}

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html#ofVirtual()
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/ExecutorService.html
John Fisher

9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 7 of 16https://www.infoq.com/articles/java-virtual-threads/

On reading this code, we might initially worry it is somehow profligate to create threads for
such short-lived activities or a thread pool for so few tasks, but this is just something we will
have to unlearn -- this code is a perfectly responsible use of virtual threads

Isnt this just "green threads"?

Java developers may recall that in the Java 1.0 days, some JVMs implemented threads using
user-mode, or "green", threads. Virtual threads bear a superficial similarity to green threads
in that they are both managed by the JVM rather than the OS, but this is where the similarity
ends. The green threads of the 90s still had large, monolithic stacks. They were very much a
product of their time, when systems were single-core and OSes didnt have thread support at
all. Virtual threads have more in common with the user-mode threads found in other
languages, such as goroutines in Go or processes in Erlang -- but have the advantage of being
semantically identical to the threads we already have.

It's about scalability

Despite the difference in creation costs, virtual threads are not faster than platform threads;
we cant do any more computation with one virtual thread in one second than we can with a
platform thread. Nor can we schedule any more actively running virtual threads than we can
platform threads; both are limited by the number of available CPU cores. So, what is the
benefit? Because they are so lightweight, we can have many more inactive virtual threads
than we can with platform threads. At first, this may not sound like a big benefit at all! But
"lots of inactive threads" actually describes the majority of server applications. Requests in
server applications spend much more time doing network, file, or database I/O than
computation. So if we run each task in its own thread, most of the time that thread will be
blocked on I/O or other resource availability. Virtual threads allow IO-bound thread-per-
task applications to scale better by removing the most common scaling bottleneck -- the
maximum number of threads -- which in turn enables better hardware utilization. Virtual
threads allow us to have the best of both worlds: a programming style that is in harmony
with the platform rather than working against it, while allowing optimal hardware
utilization.

https://docs.oracle.com/cd/E19455-01/806-3461/ch2mt-41/index.html
https://go.dev/tour/concurrency/1
https://go.dev/tour/welcome/1
https://www.erlang.org/doc/reference_manual/processes.html
https://www.erlang.org/
John Fisher

John Fisher

John Fisher

John Fisher

9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 8 of 16https://www.infoq.com/articles/java-virtual-threads/

For CPU-bound workloads, we already have tools to get to optimal CPU utilization, such as
the fork-join framework and parallel streams. Virtual threads offer a complementary benefit
to these. Parallel streams make it easier to scale CPU-bound workloads, but offer relatively
little for IO-bound workloads; virtual threads offer a scalability benefit for IO-bound
workloads, but relatively little for CPU-bound ones.

Littles Law

The scalability of a stable system is governed by Littles Law, which relates latency,
concurrency, and throughput. If each request has a duration (or latency) of d, and we can
perform N tasks concurrently, then throughput T is given by

T = N / d

Littles Law doesnt care about what portion of the time is spent "doing work" vs "waiting", or
whether the unit of concurrency is a thread, a CPU, an ATM machine, or a human bank
teller. It just states that to scale up the throughput, we either have to proportionally scale
down the latency or scale up the number of requests we can handle concurrently. When we
hit the limit on concurrent threads, the throughput of the thread-per-task model is limited
by Littles Law. Virtual threads address this in a graceful way by giving us more concurrent
threads rather than asking us to change our programming model.

Virtual threads in action

Virtual threads do not replace platform threads; they are complementary. However, many
server applications will choose virtual threads (often through the configuration of a
framework) to achieve greater scalability.

The following example creates 100,000 virtual threads that simulate an IO-bound operation
by sleeping for one second. It creates a virtual-thread-per-task executor and submits the
tasks as lambdas.

try (var executor = Executors.newVirtualThreadPerTaskExecutor()) {
 IntStream.range(0, 100_000).forEach(i -> {
 executor.submit(() -> {

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/package-summary.html
https://en.wikipedia.org/wiki/Little%27s_law
John Fisher

John Fisher

9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 9 of 16https://www.infoq.com/articles/java-virtual-threads/

On a modest desktop system with no special configuration options, running this program
takes about 1.6 seconds in a cold start, and about 1.1 seconds after warmup. If we try running
this program with a cached thread pool instead, depending on how much memory is
available, it may well crash with OutOfMemoryError before all the tasks are submitted. And if
we ran it with a fixed-sized thread pool with 1000 threads, it wont crash, but Littles Law
accurately predicts it will take 100 seconds to complete.

Things to unlearn

Because virtual threads are threads and have little new API surface of their own, there is
relatively little to learn in order to use virtual threads. But there are actually quite a few
things we need to unlearn in order to use them effectively.

Everyone out of the pool

The biggest thing to unlearn is the patterns surrounding thread creation. Java 5 brought
with it the java.util.concurrent package, including the ExecutorService framework, and
Java developers have (correctly!) learned that it is generally far better to let ExecutorService
manage and pool threads in a policy-driven manner than to create threads directly. But
when it comes to virtual threads, pooling becomes an antipattern. (We dont have to give up
using ExecutorService or the encapsulation of policy that it provides; we can use the new
factory method Executors::newVirtualThreadPerTaskExecutor to get an ExecutorService
that creates a new virtual thread per task.)

 Thread.sleep(Duration.ofSeconds(1));
 return i;
 });
 });
} // close() called implicitly

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html#newVirtualThreadPerTaskExecutor()
John Fisher

9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 10 of 16https://www.infoq.com/articles/java-virtual-threads/

Because the initial footprint of virtual threads is so small, creating virtual threads is
dramatically cheaper in both time and memory than creating platform threads -- so much so,
that our intuitions around thread creation need to be revisited. With platform threads, we
are in the habit of pooling them, both to place a bound on resource utilization (because its
easy to run out of memory otherwise), and to amortize the cost of thread startup over
multiple requests. On the other hand, creating virtual threads is so cheap that it is actively a
bad idea to pool them! We would gain little in terms of bounding memory usage, because the
footprint is so small; it would take millions of virtual threads to use even 1G of memory. We
also gain little in terms of amortizing creation overhead, because the creation cost is so
small. And while it is easy to forget because pooling has historically been a forced move, it
comes with its own problems, such as ThreadLocal pollution (where ThreadLocal values are
left behind and accumulate in long-lived threads, causing memory leaks.)

If it is necessary to limit concurrency to bound consumption of some resource other than the
threads themselves, such as database connections, we can use a Semaphore and have each
virtual thread that needs the scarce resource acquire a permit.

Virtual threads are so lightweight that it is perfectly OK to create a virtual thread even for
short-lived tasks, and counterproductive to try to reuse or recycle them. Indeed, virtual
threads were designed with such short-lived tasks in mind, such as an HTTP fetch or a JDBC
query.

Overuse of ThreadLocal

John Fisher

9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 11 of 16https://www.infoq.com/articles/java-virtual-threads/

Libraries may also need to adjust their use of ThreadLocal in light of virtual threads. One of
the ways in which ThreadLocal is sometimes used (some would say abused) is to cache
resources that are expensive to allocate, not thread-safe, or simply to avoid repeated
allocation of a commonly used object (e.g., ASM uses a ThreadLocal to maintain a per-thread
char[] buffer, used for formatting operations.) When a system has a few hundred threads,
the resource usage from such a pattern is usually not excessive, and it may be cheaper than
reallocating each time it is needed. But the calculus changes dramatically with a few million
threads that each only perform a single task, because there are potentially many more
instances allocated and there is much less chance of each being reused. Using a ThreadLocal
to amortize the creation cost of a costly resource across multiple tasks that may execute in
the same thread is an ad-hoc form of pooling; if these things need to be pooled, they should
be pooled explicitly.

What about Reactive?

A number of so-called "async" or "reactive" frameworks offer a path to fuller hardware
utilization by asking developers to trade the thread-per-request style in favor of
asynchronous IO, callbacks, and thread sharing. In such a model, when an activity needs to
perform IO, it initiates an asynchronous operation which will invoke a callback when
complete. The framework will invoke that callback on some thread, but not necessarily the
same thread that initiated the operation. This means developers must break their logic down
into alternating IO and computational steps which are stitched together into a sequential
workflow. Because a request only uses a thread when it is actually computing something, the
number of concurrent requests is not bounded by the number of threads, and so the limit on
the number of threads is less likely to be the limiting factor in application throughput.

9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 12 of 16https://www.infoq.com/articles/java-virtual-threads/

But, this scalability comes at a great cost -- you often have to give up some of the
fundamental features of the platform and ecosystem. In the thread-per-task model, if you
want to do two things sequentially, you just do them sequentially. If you want to structure
your workflow with loops, conditionals, or try-catch blocks, you just do that. But in the
asynchronous style, you often cannot use the sequential composition, iteration, or other
features the language gives you to structure the workflow; these must be done with API calls
that simulate these constructs within the asynchronous framework. An API for simulating
loops or conditionals will never be as flexible or familiar as the constructs built into the
language. And if we are using libraries that perform blocking operations, and have not been
adapted to work in the asynchronous style, we may not be able to use these either. So we
may get scalability from this model, but we have to give up on using parts of the language
and ecosystem to get it.

These frameworks also make us give up a number of the runtime features that make
developing in Java easier. Because each stage of a request might execute in a different
thread, and service threads may interleave computations belonging to different requests, the
usual tools we use when things go wrong, such as stack traces, debuggers, and profilers, are
much less helpful than in the thread-per-task model. This programming style is at odds with
the Java Platform because the frameworks unit of concurrency -- a stage of an asynchronous
pipeline -- is not the same as the platforms unit of concurrency. Virtual threads, on the other
hand, allow us to gain the same throughput benefit without giving up key language and
runtime features.

What about async/await?

A number of languages have embraced async methods (a form of stackless coroutines) as a
means of managing blocking operations, which can be called either by other async methods
or by ordinary methods using the await statement. Indeed, there was some popular call to
add async/await to Java, as C# and Kotlin have.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://kotlinlang.org/docs/async-programming.html

9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 13 of 16https://www.infoq.com/articles/java-virtual-threads/

Virtual threads offer some significant advantages that async/await does not. Virtual threads
are not just syntactic sugar for an asynchronous framework, but an overhaul to the JDK
libraries to be more "blocking-aware". Without that, an errant call to a synchronous blocking
method from an async task will still tie up a platform thread for the duration of the call.
Merely making it syntactically easier to manage asynchronous operations does not offer any
scalability benefit unless you find every blocking operation in your system and turn it into an
async method.

A more serious problem with async/await is the "function color" problem, where methods
are divided into two kinds -- one designed for threads and another designed for async
methods -- and the two do not interoperate perfectly. This is a cumbersome programming
model, often with significant duplication, and would require the new construct to be
introduced into every layer of libraries, frameworks, and tooling in order to get a seamless
result. Why would we implement yet another unit of concurrency -- one that is only syntax-
deep -- which does not align with the threads we already have? This might be more attractive
in another language, where language-runtime co-evolution was not an option, but
fortunately we didnt have to make that choice.

API and platform changes

Virtual threads, and their related APIs, are a preview feature. This means that the --enable-
preview flag is needed to enable virtual thread support.

Virtual threads are implementations of java.lang.Thread, so there is no new VirtualThread
base type. However, the Thread API has been extended with some new API points for
creating and inspecting threads. There are new factory methods for Thread::ofVirtual and
Thread::ofPlatform, a new Thread.Builder class, and Thread::startVirtualThread to create
a start a task on a virtual thread in one go. The existing thread constructors continue to work
as before, but are only for creating platform threads.

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://openjdk.java.net/jeps/12
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.html#ofPlatform()
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Thread.Builder.html
John Fisher

9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 14 of 16https://www.infoq.com/articles/java-virtual-threads/

There are a few behavioral differences between virtual and platform threads. Virtual threads
are always daemon threads; the Thread::setDaemon method has no effect on them. Virtual
threads always have priority Thread.NORM_PRIORITY which cannot be changed. Virtual
threads do not support some (flawed) legacy mechanisms, such as ThreadGroup and the
Thread methods stop, suspend, and remove. Thread::isVirtual will reveal whether a thread
is virtual or not.

Unlike platform thread stacks, virtual threads can be reclaimed by the garbage collector if
nothing else is keeping them alive. This means that if a virtual thread is blocked, say, on
BlockingQueue::take, but neither the virtual thread nor the queue is reachable by any
platform thread, then the thread and its stack can be garbage collected. (This is safe because
in this case the virtual thread can never be interrupted or unblocked.)

Initially, carrier threads for virtual threads are threads in a ForkJoinPool that operates in
FIFO mode. The size of this pool defaults to the number of available processors. In the
future, there may be more options to create custom schedulers.

Preparing the JDK

While virtual threads are the primary deliverable of Project Loom, there was a number of
improvements behind the scenes in the JDK to ensure that applications would have a good
experience using virtual threads:

New socket implementations. JEP 353 (Reimplement the Legacy Socket API) and
JEP 373 (Reimplement the Legacy DatagramSocket API) replaced the implementations
of
Socket
,
ServerSocket
, and
DatagramSocket
to better support virtual threads (including making blocking methods interruptible in
virtual threads.)
Virtual-thread-awareness. Nearly all blocking points in the JDK were made aware
of virtual threads, and will unmount a virtual thread rather than blocking it.

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/ForkJoinPool.html
https://openjdk.java.net/jeps/353
https://openjdk.java.net/jeps/373

9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 15 of 16https://www.infoq.com/articles/java-virtual-threads/

Revisiting the use of
ThreadLocal
. Many uses of
ThreadLocal
in the JDK were revised in light of the expected changing usage patterns of threads.
Revisiting locking. Because acquiring an intrinsic lock (
synchronized
) currently pins a virtual thread to its carrier, critical intrinsic locks were replaced with
ReentrantLock
, which does not share this behavior. (The interaction between virtual threads and
intrinsic locks is likely to be improved in the future.)
Improved thread dumps. Greater control over thread dumps, such as those
produced by
jcmd
, is provided to filter out virtual threads, group related virtual threads together, or
produce dumps in machine-readable formats that can be post-processed for better
observability.

Related work

While virtual threads are the main course of Project Loom, there are several other Loom sub-
projects that further enhance virtual threads. One is a simple framework for structured
concurrency, which offers a powerful means to coordinate and manage cooperating groups
of virtual threads. The other is extent local variables, which are similar to thread locals, but
more suitable (and performant) for use in virtual threads. These will be the topics of
upcoming articles.

About the Author

https://openjdk.org/jeps/428

9/26/22, 10:16 AMVirtual Threads: New Foundations for High-Scale Java Applications

Page 16 of 16https://www.infoq.com/articles/java-virtual-threads/

Brian Goetz

Show more
Show less

Inspired by this content? Write for InfoQ.

Becoming an editor for InfoQ was one of the best decisions of my career. It has
challenged me and helped me grow in so many ways. We'd love to have more people
join our team.

Thomas Betts
Lead Editor, Software Architecture and Design @InfoQ; Senior Principal Engineer
Write for InfoQ

1

Please see https://www.infoq.com for the latest version of this information.

https://www.infoq.com/profile/Brian-Goetz/
https://www.infoq.com/url/t/9f7cc765-74cd-4913-a027-18f5d861b56d/?label=Long-Text-Ad

