

Visual Logic

A thesis proposal

submitted to the thesis committee

of

California State Polytechnic University at Pomona

Computer Science Department

by

Luu Tran

September 1995

�
Abstract

	The concept of supported propositions using formalizations based upon clause trees are introduced by [Fisher95]. Supported propositions are defined as “relatively safe logical consequences of certain consistent sub-programs.” The concept is meant to provide a framework for dealing with logic programs which may be classically inconsistent (unsatisfiable) as a whole but which may nevertheless contain interesting sub-programs that are in themselves consistent.

	This thesis describes ‘Visual Logic’, a graphical software system for visualizing and animating supported propositions and related tree-based logical concepts. The primary components of the project are: 1) proposal of the requirements for the system; 2) implementation of the specification, in whole or in part; and 3) assessment of the effectiveness of the system. In addition, the thesis relates ‘Visual Logic’ to other diagrammatic and graphical systems utilized in logic and reasoning. The overall goal is to complement Dr. Fisher’s works as well as to show how visual systems may be used to augment and enhance traditional symbolic representations in the field of logic.

�
Table of Contents

�toc \o "1-3" �1. Introduction	4

2. Background	5

Logic programs	5

Clause trees and supported propositions	6

An example	7

Clause trees and linear resolution	8

Theorems	10

3. Thesis	10

Preliminary results	10

Possible extensions	11

Plan for the thesis	13

4. Related works	13

Peirce’s existential graphs	13

Recent works	15

‘Visual Logic’ in perspective	16

References	17

��
1. Introduction

	Humans, whether or not they are formally trained, routinely use diagrams to facilitate the process of design, reasoning, and problem solving. Researchers have shown that diagrams play several roles in this respect: a diagram serves as a short-term memory device, as a well-understood base concept from which more complicated parts of the problem may be described, as an aid in visualization, or as a tool in selecting an appropriate method or approach. In addition, the use of diagrams and other visual representations helps reveal important information that may not be apparent in sentential / linguistic forms or symbolic / mathematical forms [Tessler93]. Yet in spite of their obvious advantages, diagrams have been largely ignored by logicians and AI researchers who have for the most part focused on symbolic representations and symbolic reasoning [IUVIL95].

	In the spring of 1992, the American Association for Artificial Intelligence (AAAI) held its first symposium on Reasoning with diagrammatic representations and signaled a renewal of interest in the use of diagrammatic or visual representations in problem solving and reasoning [Glasgow95]. The symposium brought researchers from various disciplines to discuss both psychological and AI-related issues. Of particular interest to this project are the works in visual reasoning (to be discussed later). The consensus view emerging from the symposium was that “traditional symbolic representation will increasingly be combined with visual representation in future AI research” [Chandra93]. This is the basis for the project.

	This project began as a computer program to compute certain logical concepts based on clause trees and to display and animate the clause trees. The program in essence produces an animation of the execution of logic programs. Among the program’s interesting features:

·	It shows how propositions can be derived in a graphical and (hopefully) intuitive format.

·	It allows the user to arbitrarily explore any node or branch in the tree; nodes can be expanded in an incremental or ‘automatic’ fashion.

·	It provides a mechanism for getting alternative derivations.

	The plan for the project includes:

·	To expand the program further in order to (for example) handle non-ground terms.

·	To explore various methods for visual representations. For instance, what is the best way to show alternative derivations? Is it possible to present different views of the same data? etc.

·	To experiment with the system and assess its effectiveness; to determine how suitable clause trees are as a basis for visualizing and working with logic programs.

·	To explore the connection between ‘Visual Logic’ and visual programming.

	The next section of the proposal describes clause trees and the logical concepts behind ‘Visual Logic’. Section 3 discusses the preliminary works on ‘Visual Logic’ and outlines the plan for the thesis. Section 4 provides a survey (by no means comprehensive) of some related works in this area, including an overview of Pierce’s existential graphs and recent graphical systems used in visual reasoning.

2. Background

Logic programs

	A logic program S with classical negation is a finite collection of directed clauses, each of which has the form

	p �symbol 172 \f "Symbol" \s 12�� q�1, q2, ..., qn.

where n�symbol 179 \f "Symbol" \s 12��0, �symbol 172 \f "Symbol" \s 12�� is the implication operator, commas represent conjunction, and p, q1...qn are either positive or negative terms. Each directed clause also has an equivalent disjunctive form

	p �symbol 218 \f "Symbol" \s 12�� �symbol 216 \f "Symbol" \s 12��q1 �symbol 218 \f "Symbol" \s 12�� �symbol 216 \f "Symbol" \s 12��q2 �symbol 218 \f "Symbol" \s 12�� ... �symbol 218 \f "Symbol" \s 12�� qn.

	The classical negation of term p is �symbol 216 \f "Symbol" \s 12��p; double negations are absorbed. For example, the negation of �symbol 216 \f "Symbol" \s 12��s(a) is s(a) and vice versa. Note that the clause p �symbol 172 \f "Symbol" \s 12�� is equivalent to p �symbol 172 \f "Symbol" \s 12�� true. For the purpose of this discussions, all terms are grounded (propositions).

	An interpretation for a logic program S with classical negation is defined the usual way, that is, as an assignment I of truth value (TRUE or FALSE) to ground terms and clauses in S as follows:

·	for the atoms ‘true’ and ‘false’:

		I(true) 		:= TRUE

		I(false)		:= FALSE

·	for any ground term p:

		I(p)		:= TRUE if I(�symbol 216 \f "Symbol" \s 12��p) = FALSE

		I(p)		:= FALSE if I(�symbol 216 \f "Symbol" \s 12��p) = TRUE

·	for any clause in S:

		I(p �symbol 172 \f "Symbol" \s 12�� q�1, q2, ..., qn)	:= FALSE if

			I(qi) 	= TRUE, 1 �symbol 163 \f "Symbol" \s 12�� i �symbol 163 \f "Symbol" \s 12�� n, and

			I(p)	= FALSE

		I(p �symbol 172 \f "Symbol" \s 12�� q�1, q2, ..., qn)	:= TRUE otherwise

	Note that any such interpretation assigns the same truth value to each directed clause as a ‘classical’ interpretation does to the corresponding disjunctive clause. An assignment I that assigns TRUE to every clause in logic program S is called a model for S. If there exists a model for S, then S is said to be consistent or satisfiable; otherwise, S is inconsistent or unsatisfiable. If every model for S also assigns TRUE to some proposition p, then p is a logical consequence of S, written as S �eq |\d\ba1()=�� p.

	If S is inconsistent, then S �eq |\d\ba1()=�� p for all p. While this is logically sound (any conclusion follows a false premise), it is not particularly useful. What’s more, it is somewhat contrary to ordinary, everyday analytical reasoning. After all, people (normally) do not capitulate and allow for any conclusion whenever they are confronted with inconsistent or conflicting information. For example, jurors in a trial may be presented with evidences that both support and refute a proposition (“the defendant is guilty”) but usually still manage to come to a conclusion (“guilty” / “not guilty”). One factor is of course the jurors’ ability to ‘weigh’ the evidences. For instance, they may give more credence to forensic results and less credence to testimony from an ‘eyewitness’ with less than acute vision.

	Probably another important factor is the ability to focus on smaller, possibly self-consistent subsets of information in order to arrive at some intermediate determination. For instance, evidences A, B, and F may point to a sufficient ‘window of opportunity’ and C, D, and Q support the theory that the defendant committed the crime by X means. Now it’s possible that A contradicts Q so that the set of evidences as a whole is inconsistent. Nevertheless, it is probably instructive to systematically identify these subsets of self-consistent information and be able to say something meaningful about the intermediate conclusions that they support. The logical concepts introduced in [Fisher95] is an attempt to formalize this process and to provide a framework for dealing with logic programs which may be inconsistent as a whole but which may nevertheless contain interesting sub-programs that are in themselves consistent.

Clause trees and supported propositions

	Let S be a logic program with classical negations and let p be a term in S. A clause tree T rooted at p is either:

·	p itself, or

·	a tree rooted at p and having (unordered) children T1, T2, ..., Tk, where T1, T2, ..., Tk are clause trees rooted at q1, q2, ..., qk respectively, and p �symbol 172 \f "Symbol" \s 12�� q1, q2, ..., qk is a clause appearing in S.

	A closed clause tree T rooted at p is a clause tree rooted at p such that every leaf q in T is either:

·	true, or

·	a descendent of some node q’ in T such that q’ is the classical negation of q.

	If there is a closed clause tree rooted at p, then p is said to be evident. If both p and its negation �symbol 216 \f "Symbol" \s 12��p are evident then p is said to be conflicted.

	Proposition p is supported provided that there is a closed clause tree T rooted at p such that none of the interior nodes in T is conflicted. By definition, if p is supported, then it is evident.

An example

	Consider the following logic program:

a �symbol 172 \f "Symbol" \s 12�� b, �symbol 216 \f "Symbol" \s 12��c, d.		�symbol 216 \f "Symbol" \s 12��a �symbol 172 \f "Symbol" \s 12��	

b �symbol 172 \f "Symbol" \s 12��				�symbol 216 \f "Symbol" \s 12��b �symbol 172 \f "Symbol" \s 12�� e, f.	�symbol 216 \f "Symbol" \s 12��c �symbol 172 \f "Symbol" \s 12�� �symbol 216 \f "Symbol" \s 12��b.			�symbol 216 \f "Symbol" \s 12��c �symbol 172 \f "Symbol" \s 12��		

d �symbol 172 \f "Symbol" \s 12�� �symbol 216 \f "Symbol" \s 12��a.			d �symbol 172 \f "Symbol" \s 12�� e.		

e �symbol 172 \f "Symbol" \s 12�� c.			e �symbol 172 \f "Symbol" \s 12�� a, f.	f �symbol 172 \f "Symbol" \s 12��

	Four sample clause trees are shown below. Note that only T1 and T2 are closed.. Only a, �symbol 216 \f "Symbol" \s 12��a, b, �symbol 216 \f "Symbol" \s 12��b, �symbol 216 \f "Symbol" \s 12��c, d, e, and f are evident. a and �symbol 216 \f "Symbol" \s 12��a and b and �symbol 216 \f "Symbol" \s 12��b are conflicted. Only �symbol 216 \f "Symbol" \s 12��a, b, �symbol 216 \f "Symbol" \s 12��c, and f are supported. As a clarification, consider �symbol 216 \f "Symbol" \s 12��c. There is a closed clause tree rooted at �symbol 216 \f "Symbol" \s 12��c (T2); therefore �symbol 216 \f "Symbol" \s 12��c is evident. Its negation, c, is not evident since a closed clause tree rooted at c cannot be constructed. Looking at T2, it would seem �symbol 216 \f "Symbol" \s 12��c is not supported since one of its interior nodes, �symbol 216 \f "Symbol" \s 12��b, is conflicted. However, another closed clause tree for �symbol 216 \f "Symbol" \s 12��c, namely T4, shows that it is.

 T1 T2 T3 T4

 a �symbol 216 \f "Symbol" \s 12��c d �symbol 216 \f "Symbol" \s 12��c

 b �symbol 216 \f "Symbol" \s 12��c d �symbol 216 \f "Symbol" \s 12��b �symbol 216 \f "Symbol" \s 12��a true

true �symbol 216 \f "Symbol" \s 12��b �symbol 216 \f "Symbol" \s 12��a e f

 e f c true

 c true

	Whether the above definition of ‘evident’ and ‘support’ agree with some intuitive or pedantic understanding of these concepts is debatable, and indeed no claim is made to that effect. We simply note that it is useful to define and talk about ‘evident’ and ‘support’ in the manner described here without asserting, for instance, that this is in fact what people really mean when they use these terms.

	Returning to tree T1 in the example, note that the subtree rooted at �symbol 216 \f "Symbol" \s 12��c is itself a closed clause tree. In contrast, the subtree rooted at, say, �symbol 216 \f "Symbol" \s 12��b is not a closed clause tree. Hence, there is a difference between �symbol 216 \f "Symbol" \s 12��c and �symbol 216 \f "Symbol" \s 12��b which can be made explicit through the notion of a contingency annotated closed clause tree.

�
	A contingency annotated closed clause tree T rooted at p is a closed clause tree rooted at p where each node in T is annotated with a set of contingencies as follows:

·	each ‘true’ leaf is annotated with the empty set {}.

·	each non-true leaf is annotated with a set containing solely of its negation.

·	each non-leaf node is annotated with the union of its children’s contingency sets minus itself; i.e., if node n has children nodes n1, n2, ..., nk whose contingency sets are C1, C2, ..., Ck respectively, then n is annotated with the set C1 �symbol 200 \f "Symbol" \s 12�� C2 �symbol 200 \f "Symbol" \s 12��... �symbol 200 \f "Symbol" \s 12�� Ck \ {n}.

	Here is T1 annotated with contingency sets.

 T5

 a/{}

 b/{} �symbol 216 \f "Symbol" \s 12��c/{} d/{a}

true/{} �symbol 216 \f "Symbol" \s 12��b/{�symbol 216 \f "Symbol" \s 12��c} �symbol 216 \f "Symbol" \s 12��a/{a}

 e/{�symbol 216 \f "Symbol" \s 12��c} f/{}

 c/{�symbol 216 \f "Symbol" \s 12��c} true/{}

	In a contingency annotated closed clause tree, any node with a non-empty contingency set is called a contingent node. An interior node with an empty contingency set is called a supporting node. In T5, �symbol 216 \f "Symbol" \s 12��b is a contingent node while �symbol 216 \f "Symbol" \s 12��c is a supporting node. Roughly speaking, a contingent node is a node that was involved in case-based reasoning. It is not necessary to commit to any truth value concerning a contingent node [Fisher95]. In T5, �symbol 216 \f "Symbol" \s 12��b is neither evident nor supported but is used ‘in a contingent manner’ in order to argue for c being supported. A supporting node is (again roughly speaking) a stronger assertion since it is itself evident and possibly supported.

Clause trees and linear resolution

	Let S be a set of disjunctive clauses and Co �symbol 101 \f "Symbol" \s 12�� S, a linear deduction of Cn from S with top clause Co is a deduction of the form

 Co Bo

 C1 B1

 C2 B2

 Cn-1 Bn-1

 Cn

where each Ci+1 is a resolvent of Ci and Bi, 0 �symbol 163 \f "Symbol" \s 12�� i �symbol 163 \f "Symbol" \s 12�� n-1, and each Bi is either in S or a previous resolvent Cj, j<i. A linear refutation of Co from S is a linear deduction of the empty clause �symbol 255 \f "Symbol" \s 12�� from top clause Co. [Chang73] shows that if S is unsatisfiable but S \ {C} is satisfiable, where C is a clause in S, then there is a linear refutation of C from S.

	Clause trees and linear refutation are closely connected. Let S be a set of disjunctive clauses and S’ be its corresponding set of directed clauses. [Fisher95] shows that any linear refutation of C = p1 �symbol 218 \f "Symbol" \s 12�� p2 �symbol 218 \f "Symbol" \s 12�� ... �symbol 218 \f "Symbol" \s 12�� pn from S can be converted to a set of closed clause trees T1, T2, ..., Tn rooted at �symbol 216 \f "Symbol" \s 12��p1, �symbol 216 \f "Symbol" \s 12��p2, ..., �symbol 216 \f "Symbol" \s 12��pn, respectively, where each Ti is constructed using clauses from S’. Conversely, any closed clause tree rooted at p and constructed using clauses from S’ can be converted to a linear refutation of �symbol 216 \f "Symbol" \s 12��p from S.

	For example, the set of disjunctive clauses corresponding to the sample logic program is S = {a�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��b�symbol 218 \f "Symbol" \s 12��c�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��d, �symbol 216 \f "Symbol" \s 12��a, b, �symbol 216 \f "Symbol" \s 12��b�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��e�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��f, �symbol 216 \f "Symbol" \s 12��c�symbol 218 \f "Symbol" \s 12��b, �symbol 216 \f "Symbol" \s 12��c, d�symbol 218 \f "Symbol" \s 12��a, d�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��e, e�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��c, e�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��a�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��f, f}. Below are the clause tree rooted at a and the corresponding linear refutation of �symbol 216 \f "Symbol" \s 12��a from S.

 a �symbol 216 \f "Symbol" \s 12��a* a�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��b�symbol 218 \f "Symbol" \s 12��c�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��d

 b �symbol 216 \f "Symbol" \s 12��c d �symbol 216 \f "Symbol" \s 12��b�symbol 218 \f "Symbol" \s 12��c�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��d b

true �symbol 216 \f "Symbol" \s 12��b �symbol 216 \f "Symbol" \s 12��a c�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��d** �symbol 216 \f "Symbol" \s 12��c�symbol 218 \f "Symbol" \s 12��b

 e f b�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��d �symbol 216 \f "Symbol" \s 12��b�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��e�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��f

 c true �symbol 216 \f "Symbol" \s 12��e�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��f�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��d e�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��c

 �symbol 216 \f "Symbol" \s 12��c�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��f�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��d c�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��d**

 �symbol 216 \f "Symbol" \s 12��f�symbol 218 \f "Symbol" \s 12���symbol 216 \f "Symbol" \s 12��d f

 �symbol 216 \f "Symbol" \s 12��d d�symbol 218 \f "Symbol" \s 12��a

 a �symbol 216 \f "Symbol" \s 12��a*

 �symbol 255 \f "Symbol" \s 12��

	Hence, well-known results for linear resolution may be applied to clause trees. Linear resolution is important in part because it is relatively efficient and can be easily implemented on a computer. Clause trees, on the other hand, have the advantage of being more compact and readable.

�
Theorems

	Let T be a closed clause tree rooted at some proposition p, define sub-program ST as the set of ground clauses from logic program S that were used to construct T. Below are three important theorems relating supporting propositions, clause trees, and sub-programs. The reader is referred to [Fisher95] for the proofs.

Theorem 1. If S is consistent and S �eq |\d\ba1()=�� p then there is a closed clause tree rooted at p constructed using clauses from S.

	Theorem 2. If there is a closed clause tree T rooted at p and ST is consistent, then ST �eq |\d\ba1()=�� p.

	Theorem 3. If p is supported by closed clause tree T, then ST is consistent and ST �eq |\d\ba1()=�� p.

	For example, consider T2. ST2 = {(�symbol 216 \f "Symbol" \s 12��c �symbol 172 \f "Symbol" \s 12�� �symbol 216 \f "Symbol" \s 12��b),(�symbol 216 \f "Symbol" \s 12��b �symbol 172 \f "Symbol" \s 12�� e, f),(e �symbol 172 \f "Symbol" \s 12�� c),(f �symbol 172 \f "Symbol" \s 12��)}. ST2 is consistent (e.g., assign TRUE to e and f and FALSE to c and b). Next, simply convert T2 to a linear refutation of c from ST2 to show ST2 �eq |\d\ba1()=�� �symbol 216 \f "Symbol" \s 12��c.

3. Thesis

	Dr. Fisher has written several Prolog programs to compute the logical concepts described previously. It became apparent that having a graphical system capable of displaying and possibly manipulating the associated clause trees would be both useful and instructive. This led to a program tentatively named ‘Visual Logic’ (written by me). The program was implemented using SWI-Prolog [SWI95], a public domain Prolog interpreter and XPCE [XPCE95], an object-oriented graphical interface package for Prolog and other symbolic languages. Both systems were developed at the University of Amsterdam.

Preliminary results

	‘Visual Logic’ (VL or short) accepts as input a text file of directed clauses and produces clause tree for any given proposition. The program in essence produces an animation of the execution of logic programs. The user may arbitrarily explore any node or branch in the tree, expanding a single node or an entire tree at a time. There is also a mechanism for ‘redoing’ any node for which alternative derivations exist. The user may issue commands via the keyboard or mouse-activated pop-up menus.

	VL does not pre-compute the clause trees but generates them dynamically. The program exploits XPCE’s object-oriented structure to good effect. For instance, one of the early questions was how, or more precisely when, nodes should be checked to determine whether they are ‘evident’ propositions. The solution: when a closed leaf (a ‘true’ node or one which is ancestor-resolved) is created, it sends a message to each of its ancestors to check whether it is at the root of a closed clause tree.

	A screen shot is shown here with several expanded clause trees. The test logic program is the sample program used throughout this paper. Note that ‘evident’ propositions are identified as such. Different types of nodes have different colors (although this may not be apparent from the printed output). An inverted 3D appearance indicates that there are one or more alternative derivations for that node. In the middle tree, e has been expanded with an alternative derivation via e �symbol 172 \f "Symbol" \s 12�� a, f. Expanding a then leads to a ‘repeat’ node at �symbol 216 \f "Symbol" \s 12��c (an infinite loop), which blocks further expansion. The rightmost part of the screen shows a partially expanded tree with a sample pop-up menu.

�

Possible extensions

	As it stands, VL is a simple but fairly useful tool for exploring clause trees. Its various shortcomings include:

·	It does not show annotations for closed clause trees. This could be readily implemented.

·	It does not compute ‘supported’ propositions. This is a bit more problematic, given the exploratory function of the present program. Computing supported(p) involves checking that none of the interior nodes is conflicted. This is complicated by the fact that the trees for the interior nodes may not have been created yet.

·	It does not handle non-ground clauses. Preliminary attempts to allow for terms with variables have not been very successful. Propagating variable values through the tree is fairly easy to implement; backtracking remains a thorny problem, though. One option is to ground out all terms with a pre-processor. Otherwise, it may be preferable to restrict programs to only ground clauses in order to preserve the simplicity of the system.

	Additional extensions include:

·	A future version of VL may operate in two modes as follows: ‘Explore’ mode functions much as the present program does; ‘Query’ mode allows the user to give a specific goal such as evident(a) (show why a is evident or fail) or supported(X) (show all supported propositions for the given program). Possibly, results are pre-computed and later displayed on demand. Though not feasible with large databases, this method would be simpler to implement and would allow a clean separation between the computation portion and the graphical interface portion of the program.

·	Currently, the input to VL is a text file of directed clauses. Alternatively, the input itself may be in a graphical form, e.g., a clause tree. I’ve written a small utility that lets the user draw clause tree diagrams, converts the diagrams to (textual) directed clauses, and outputs the result to a file to be read by VL. Potentially, the two programs may be dynamically linked together so that the user can manipulate the input and immediately see the resulting effects, thereby providing visual programming of a sort.

·	The directed clauses considered in this paper all have single-term heads. (They are not quite Horn since negation is allowed in the head of the clause.) [Fisher95] actually extends the theory to allow clauses of the form

		p1 | p2 | ... | pm �symbol 172 \f "Symbol" \s 12�� q�1, q2, ..., qn.		m �symbol 179 \f "Symbol" \s 12�� 1, n �symbol 179 \f "Symbol" \s 12�� 0.

	where the head of the clause is a disjunction of terms, called states. VL may allow for pseudo-states by converting such a clause to equivalent sets of clauses

		p1 �symbol 172 \f "Symbol" \s 12�� �symbol 216 \f "Symbol" \s 12��p2, ..., �symbol 216 \f "Symbol" \s 12��pm, q�1, q2, ..., qn.

		p2 �symbol 172 \f "Symbol" \s 12�� �symbol 216 \f "Symbol" \s 12��p1, ..., �symbol 216 \f "Symbol" \s 12��pm, q�1, q2, ..., qn.

	

		pm-1 �symbol 172 \f "Symbol" \s 12�� �symbol 216 \f "Symbol" \s 12��p1, �symbol 216 \f "Symbol" \s 12��p2, ..., �symbol 216 \f "Symbol" \s 12��pm-2, �symbol 216 \f "Symbol" \s 12��pm, q�1, q2, ..., qn.

		pm �symbol 172 \f "Symbol" \s 12�� �symbol 216 \f "Symbol" \s 12��p1, �symbol 216 \f "Symbol" \s 12��p2, ..., �symbol 216 \f "Symbol" \s 12��pm-2, �symbol 216 \f "Symbol" \s 12��pm-1, q�1, q2, ..., qn.

	Alternatively, the program can be modified to handle states directly.

·	Explore different methods for visual representations. For example, explore different ways of showing alternative derivations. Currently, ‘redoing’ a node erases all nodes below it and re-grows the subtree with an unused clause. Another approach may be to create separate branches for different derivations.

Plan for the thesis

	The goals of the thesis include:

·	To expand the current system by implementing some or all of the extensions discussed in the preceding section.

·	To propose requirements for VL. Due to time and resource constraints, the implemented system will in all likelihood be a prototype that lacks many desirable properties / functions. Therefore, the thesis will include a description of requirements for the finished system.

·	To experiment with the system and assess its effectiveness.

·	To relate and compare VL with similar graphical systems used in logic and reasoning. (The next section describes several such systems.)

·	To explore (in a preliminary way) the possible application of VL as a software specification tool. VL may provide a new paradigm for specification pragmatics. For example, software modules or packages could be presented as trees, etc., to be explored.

	If successful, VL will provide an effective testbed for 1) the use of clause trees as a basis for visualizing and working with logic programs, and 2) the approach taken in [Fisher95] to deal with inconsistent programs, both of which appear to be unique. The overall goal of the thesis is to complement Dr. Fisher’s works and to show how visual systems may be used to augment and enhance traditional symbolic representations in the field of logic.

4. Related works

Peirce’s existential graphs

	In the nineteenth century, the American philosopher and logician Charles S. Peirce developed an algebraic system for logic. With a change of symbols by Peano, Peirce’s algebraic notation is the one commonly used today. Peirce, however, believed that graphs were more versatile and readable for showing logical relationships. He spent the last twenty years of his life developing his system of existential graphs. Figure �seq fig �1� shows the sentence “a cat is on a mat” in Peirce’s algebraic notation, Peano’s modified notation, and Peirce’s existential graph [Sowa93].

	Figure �seq fig \c �1�	Peirce (1883):	�symbol 229 \f "Symbol" \s 12���x �symbol 229 \f "Symbol" \s 12��y (catx �symbol 183 \f "Symbol" \s 12�� maty �symbol 183 \f "Symbol" \s 12�� onxy)

			Peano (1895):	�symbol 36 \f "Symbol" \s 12��x �symbol 36 \f "Symbol" \s 12��y (cat(x) �symbol 217 \f "Symbol" \s 12�� mat(y) �symbol 217 \f "Symbol" \s 12�� on(x,y))

			Peirce (1896):	cat �symbol 190 \f "Symbol" \s 12���symbol 190 \f "Symbol" \s 12�� on �symbol 190 \f "Symbol" \s 12���symbol 190 \f "Symbol" \s 12�� mat

	The line between ‘cat’ and ‘on,’ called the line of identity, represents the existential quantifier �symbol 36 \f "Symbol" \s 12��x; the line between ‘on’ and ‘mat’ represents �symbol 36 \f "Symbol" \s 12��y. ‘cat’ and ‘mat’ represent the predicates cat(x) and mat(y), respectively, while ‘on’ represents on(x,y). Subsequently, Peirce used ovals as natural delimiters for scope of quantifiers and negations. Figure �seq fig �2� shows the existential graph for “if there is a cat, then it is on a mat.” Each oval represents negation; together, they represent implication, since p �symbol 174 \f "Symbol" \s 12�� q �symbol 186 \f "Symbol" \s 12�� ~(p �symbol 217 \f "Symbol" \s 12�� ~ q). Note that the line of identity for ‘cat’ has the scope of both ovals, while the one for ‘mat’ is limited to the inner oval.

	Figure �seq fig \c �2�

	The existential graph above translates to the expression

	~(�symbol 36 \f "Symbol" \s 12��x)(cat(x) �symbol 217 \f "Symbol" \s 12�� ~(�symbol 36 \f "Symbol" \s 12��y) (on(x,y) �symbol 217 \f "Symbol" \s 12�� mat(y))), or equivalently,

	(�symbol 34 \f "Symbol" \s 12��x)(cat(x) �symbol 174 \f "Symbol" \s 12�� (�symbol 36 \f "Symbol" \s 12��y) (mat(y) �symbol 217 \f "Symbol" \s 12�� on(x,y))).

	Logical inference is performed directly on existential graphs by copying and erasing graphs in and out of contexts. A context with no negation (not enclosed by an oval) or nested inside an even number of ovals is considered positive; otherwise it is considered negative. Peirce stated five rules of inference and a single axiom for existential graphs: 1) any graph may be inserted in a positive context and erased in a negative context; 2) if graph g is in context c, another copy of g can be inserted in c or any context nested inside c; 3) if graph g is identical to another graph in the same context or containing context, g can be erased; 4) two ovals with nothing in between (representing double negation) can be drawn around or removed from any graph; and 5) the only axiom is a blank sheet of paper, or as Peirce called it, a blank sheet of assertion.

	As an example, consider the modus ponens rule, which derives q from p �symbol 174 \f "Symbol" \s 12�� q and p. In graph form, the premises are

	The inner p can be erased since it is identical to the outer p.

	The two ovals (double negation) can be removed to yield

	Both q and p are now in a positive context; p can be erased, leaving only q �symbol 255 \f "Symbol" \s 12��

 p

 	Using Peirce’s existential graphs, [Sowa93] gives a proof of the so-called Splendid Theorem [((p�symbol 174 \f "Symbol" \s 12��r) �symbol 217 \f "Symbol" \s 12�� (q�symbol 174 \f "Symbol" \s 12��s)) �symbol 174 \f "Symbol" \s 12�� ((p�symbol 217 \f "Symbol" \s 12��q) �symbol 174 \f "Symbol" \s 12�� (r�symbol 217 \f "Symbol" \s 12��s))] in 7 steps. In contrast, the original proof in Principia Mathematica required 43 inference steps and 28 references to other propositions. What’s more, all the steps using Peirce’s system require only copying and erasing graphs and involve no substitutions or complex transformations.

	Despite their simplicity, Peirce’s graphs have been ignored by logicians in favor of his algebraic notation. Recently, AI researchers developed conceptual graphs -- a synthesis of existential graphs, dependency graphs, and semantic networks. Conceptual graphs are as general as predicate calculus yet are as readable as special-purpose diagrams (E-R diagrams, parse trees, Petri nets, etc.). [Sowa93] shows that conceptual graphs encompass such special-purpose diagrams and can also be translated to KIF (Knowledge Interchange Format), a logic system with Lisp-like notation designed to be readily mapped to and from computer systems. Conceptual graphs have attracted wide interest and research. Among the many on-going research projects is PEIRCE, a multi-national effort to develop a “state-of-the-art, industrial strength” conceptual graphs workbench. Taking advantage of the widespread use of graphical workstations, PEIRCE allows developers to “write / draw / parse / learn large conceptual graphs / programs / databases / ontologies” [Ellis93].

Recent works

	Indiana University has established the Visual Inference Lab (IUVIL), a multi-disciplinary program aimed at understanding the role of visual information in reasoning and developing tools that utilize visual information in logic and reasoning [IUVIL95]. Among the projects developed are Tarski’s World and Hyperproof. Tarski’s World is a graphics-based computer program that uses a block world metaphor to teach students the language of first order logic (FOL) and key concepts such as satisfiability and logical consequence [Barwise91]. In a typical course in logic, students learn the language of FOL mainly by translating back and forth between English statements and FOL expressions. With Tarski’s World, students go through a variety of exercises that involve the direct use of symbolic language. For example, the student is shown a block world containing various shapes (cube, cone, dodecahedron, etc.) with different sizes (small, large) and asked whether a certain statement holds (e.g., (�symbol 34 \f "Symbol" \s 12��x) (large(x)�symbol 174 \f "Symbol" \s 12��cube(x)). In another exercise, the students is given a set of statements and asked to construct a world for which all the statements hold true. Other exercises concentrate on features of FOL that typically cause students problems (e.g., vacuous quantification) and on common mistakes in translating between English and FOL.

	Hyperproof [Barwise94] also uses a block’s world metaphor to teach skills in analytical reasoning. The student is given a block world (situation) and some initial information and asked to show that a particular statement is a logical consequence or that it cannot be derived from the given information. Hyperproof has a convention for showing partial information; therefore, goals can be of the fill-in-the-blank type as well as the true/false type. The former type of goals is more similar to the kind of reasoning task required in everyday life. Hence, Hyperproof’s strength lies in facilitating the more natural form of logical reasoning without sacrificing the rigorous formalism of FOL.

	The basic intuition behind Hyperproof and Tarski’s World is that “reasoning generally consists of the manipulation of information, not linguistic symbols.” Therefore, diagrams, maps, and other graphics-based representations can also be effectively employed in reasoning. Hyperproof has been used successfully in classrooms at Stanford, Indiana, and other universities since 1992. For an on-line demonstration of Tarski’s World and Hyperproof, see [Tarski95] and [Hyperproof95].

	Hyperproof was presented at the AAAI Spring 1992 Symposium on Reasoning with Diagrammatic Representations. Other works presented there include: a) REDRAW, a system that emulates human reasoning in civil engineering by solving a specific problem �symbol 45 \f "Symbol" \s 12�� determining the deflection shape of a structure under load �symbol 45 \f "Symbol" \s 12�� using a diagram in a way similar to what a human engineer does [Tessler93]; b) studying inference involving Venn diagrams (Sun-Joo Shin); c) implementing logic in diagrams (Stenning and Oberlander); and d) a computerized geometry proof system (Plummer and Bailin) [Chandra93]. Probably the system most similar to VL is ‘Pictorial Janus’, which draws and animates concurrent logic programs in a topological syntax [Kahn]�.

‘Visual Logic’ in perspective

	In term of its aims, VL shares some commonality with the systems described here. Its approach appears to be unique, however. VL is really a synthesis of components from several different systems. It can be thought of as a visualization tool for a particular type of data. It is partly an inference engine for a specific class of logic programs. It has elements of visual programming and graphical user interface design. Therefore, principles of good design that are germane to these systems should be applied to VL whenever appropriate.

�
References

[Barwise91]	Barwise J and Etchemendy J, The language of first-order logic. Stanford, CA: CSLI Lecture Notes, 1991.

 [Barwise94]	Barwise J and Etchemendy J, Hyperproof. Stanford, CA: CSLI Lecture Notes, 1994.

 [Chandra93]	Chandrasekaran B, Narayanan N H, and Iwasaki Y, “Reasoning with Diagrammatic Representations: A Report on the Spring Symposium.” AI Magazine v. 14 (Summer 1993). 49-56.

[Chang73]	Chang C L and Lee R C, Symbolic logic and mechanical theorem proving. New York: Academic Press, 1973.

[Ellis93]	Ellis G and Levinson R, “The Birth of PEIRCE: A Conceptual Graphs Workbench.” In Mineau G W, Moulin B, and Sowa J W (Eds.), Conceptual graphs for knowledge representations: Proceedings of the first international conference on conceptual structures, ICCS’93. New York: Springer-Verlag, 1993. 219-228.

[Fisher95]	Fisher J R, “Logic Programs with Classical Negations and Visual Logic.” California State University at Pomona, Computer Science Dept. Technical report # _______ (in progress), 1995.

 [Glasgow95]	AAAI, Diagrammatic reasoning: cognitive and computational perspective. http://www.aaai.org/Publications/Press/Catalog/glasgow.html. Last updated: 25 Jul 1995; last retrieved: 23 Aug 1995.

[Hyperproof95]	CLSI Software, Hyperproof: A sample proof. http://csli�www.stanford.edu/hp/Hproof1.html. Last updated: ???; last retrieved: 12 Sept 95.

[IUVIL95]	Indiana University. Welcome to Indiana University Visual Inference Lab, http://www-vil.cs.indiana.edu/. Last updated: ???; last retrieved: 12 Sept 95.

[Sowa93]	Sowa J F, “Relating Diagrams to Logic.” In Mineau G W, Moulin B, and Sowa J F (Eds.), Conceptual graphs for knowledge representations: Proceedings of the first international conference on conceptual structures, ICCS’93. New York: Springer-Verlag, 1993. 1-34.

[SWI95]	University of Amsterdam, SWI-Prolog home page. http://www.swi.psy.uva.nl/projects/xpce/SWI-Prolog.html. Last updated: ???; last retrieved: 12 Sept 95.

[Tarski95]	CLSI Software, Tarski’s World. http://csli�www.stanford.edu/hp/Tarski1.html. Last updated: ???; last retrieved: 12 Sept 95.

[Tessler93]	Tessler S, Iwasaki Y, and Law K, “Qualitative Structural Analysis Using Diagrammatic Reasoning.” In Glasgow J, Narayanan N H, Chandrasekaran B (Eds.), Diagrammatic reasoning: Cognitive and computational perspectives. Cambridge, MA: MIT Press, 1993.

[XPCE95]	University of Amsterdam, XPCE FAQ. http://www.swi.psy.uva.nl/projects/xpce/xpcefaq.html. Last updated: ???; last retrieved: 12 Sept 95.

� Unfortunately, I have not been able to get a hold of the paper and at this point only have a brief description of the system.

�page �7�

