Visual Logic User Guide

Luu Tran, Computer Science

Calif. State Polytechnic University, Pomona

Fall 1996

� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc372534770 � PAGEREF _Toc372534770 �2��

2. Getting started	� GOTOBUTTON _Toc372534771 � PAGEREF _Toc372534771 �2��

2.1 Starting the tool	� GOTOBUTTON _Toc372534772 � PAGEREF _Toc372534772 �2��

2.2 Format of the source file	� GOTOBUTTON _Toc372534773 � PAGEREF _Toc372534773 �3��

3. The main window	� GOTOBUTTON _Toc372534774 � PAGEREF _Toc372534774 �3��

4. The query window	� GOTOBUTTON _Toc372534775 � PAGEREF _Toc372534775 �4��

4.1 Performing a query	� GOTOBUTTON _Toc372534776 � PAGEREF _Toc372534776 �4��

4.2 Displaying the clause tree	� GOTOBUTTON _Toc372534777 � PAGEREF _Toc372534777 �4��

4.3 Meaning of the different attributes (color and font style)	� GOTOBUTTON _Toc372534778 � PAGEREF _Toc372534778 �4��

4.4 Mouse actions	� GOTOBUTTON _Toc372534779 � PAGEREF _Toc372534779 �5��

5. Explore window	� GOTOBUTTON _Toc372534780 � PAGEREF _Toc372534780 �5��

5.1 Start an explore tree	� GOTOBUTTON _Toc372534781 � PAGEREF _Toc372534781 �5��

5.2 The node selector	� GOTOBUTTON _Toc372534782 � PAGEREF _Toc372534782 �5��

5.3 Expanding nodes	� GOTOBUTTON _Toc372534783 � PAGEREF _Toc372534783 �5��

5.4 Meaning of node attributes	� GOTOBUTTON _Toc372534784 � PAGEREF _Toc372534784 �6��

5.5 Backtracking	� GOTOBUTTON _Toc372534785 � PAGEREF _Toc372534785 �6��

5.6 Getting all solutions (Important!)	� GOTOBUTTON _Toc372534786 � PAGEREF _Toc372534786 �7��

5.7 Keyboard bindings	� GOTOBUTTON _Toc372534787 � PAGEREF _Toc372534787 �7��

5.8 The watch window: additional control over expanding and redoing nodes	� GOTOBUTTON _Toc372534788 � PAGEREF _Toc372534788 �8��

5.9 Step: quickly generating all possible clause trees	� GOTOBUTTON _Toc372534789 � PAGEREF _Toc372534789 �9��

6. Other windows	� GOTOBUTTON _Toc372534790 � PAGEREF _Toc372534790 �10��

6.1 Results window	� GOTOBUTTON _Toc372534791 � PAGEREF _Toc372534791 �10��

6.2 The listing window	� GOTOBUTTON _Toc372534792 � PAGEREF _Toc372534792 �10��

6.3 The editor window	� GOTOBUTTON _Toc372534793 � PAGEREF _Toc372534793 �10��

�

�Introduction

	Visual Logic is a graphical software tool for querying and exploring logic programs. The main representation used are clause trees, which are somewhat analogous to proof or trace trees. The user interacts with the tool primarily in one of two ‘modes.’ ‘Query’ mode allows the user to make derivations from the clause database and optionally provides ‘explanations’ by showing the corresponding clause trees. ‘Explore’ allows the user to essentially trace the execution of logic programs by expanding and retracting arbitrary branches of the clause trees.

	Visual Logic also performs computation of ‘evident,’ ‘supported,’ and ‘conflicted’ propositions. These logical concepts are introduced by Fisher as extensions to classical logic. They are meant to provide a framework for dealing with logic programs which may be classically inconsistent (unsatisfiable) as a whole but which may nevertheless contain interesting sub-programs that are in themselves consistent. For additional information, see

Fisher, John R., and Tran, Luu, A visual logic, Proceedings of the ACM Symposium on Applied Computing, 1996 (SAC96), Philadelphia, pp. 17-21.

	Visual Logic was implemented using SWI-Prolog and the graphical package XPCE. Both SWI-Prolog and XPCE were developed at the University of Amsterdam and have been ported to various Unix/X-Windows environments as well as Microsoft Windows (Win32s, 95 and NT).

Getting started

Starting the tool

	After it is loaded, the tool is invoked by:

	?- vl(<filename>).

	The extension, by default, is ‘.vl’ and may be omitted. Invoking the tool without an argument:

	?- vl.

will open a file finder dialog from which the file may be selected. If a new (non-existing) file is specified, the user will be given the option to create it.

Format of the source file

	The source file should be a plain text file consisting of clauses of the form:

	p1 | p2 | ... | pn <- q�1, q2, ... , qm .	n > 0, m > 0.

or	p :- q�1, q2, ..., qn .				n > 0.

	where vertical bars (|) represent disjunction and commas represent conjunction. Negation of a term is indicated by preceding it with a tilde (~). Otherwise, syntax for terms adheres to Prolog rules. That is, names and functors start with a lower case letter while variables start with an upper case letter. The underscore (_) should be used in place of anonymous variables. Each clause must be terminated by a period.

Disjunction is allowed only in the head. Clauses whose implication operator is :- are added to the clause database unchanged. Clauses whose implication operator is <- are converted to a corresponding set of all possible contrapositive forms. That is, each clause

p1 | p2 | ... | pn <- q�1, q2, ... , qm .	n > 0, m > 0.

is converted to a set of m+n clauses

pi :- ~p1, ... ,~pi-1,~pi+1,..., ~p�n, q�1, q2,... , qm . 	i = 1..n

and	~q�j :- ~p1,~p2, ... ,~pn, q�1, q2, ..., qj-1,qj+1 ,... , qm . 	j =1..m

	Note that ‘p <- true.’ ‘p :- true.’ and ‘p.’ are all equivalent but ‘p <- .’ and ‘p :- .’ are not allowed.

The main window

	The main window is a long narrow toolbar at the top of the screen. From here, the user can switch between the various windows, consult (load) a source file, edit the source file, invoke the help file, or quit the tool. (Note: the size and position of windows may have been changed by the local resource configuration file.)

The query window

Performing a query

	To perform a query, type in a goal in the text entry field. Then, click on the Evdnt button, for example, to verify if the goal is evident. Similarly for conflicted and supported. As a short cut, clicking on the Query to first check whether the goal is evident and if so, whether it is conflicted and/or supported.

A goal may contain variables. In fact, typing in a lone variable X and clicking Query gives all possible derivations for the current program, For a large database, this may take a very long time to compute.

The tool responses to a query in one of two ways. If the goal fails, it simply returns a 'failed' message. Otherwise, it lists the results on the left pane of the window. A result may be listed more than once if there is more than one way to derive it.

Displaying the clause tree

Click on a result in the left pane to display its associated clause tree on the right pane. In effect, this provides an explanation for the answer. Each tree is displayed on its own white, raised area, called a ‘cell.’ The contingency set of each node is displayed in brackets ([]) to the left of its term.

Meaning of the different attributes (color and font style)

The attribute of each node (term) denotes its value as follows:

green: term is ‘true’ or ancestry resolved.

blue: term is evident.

bold and red: term is conflicted.

bold and purple: term is supported.

bold and black: conflicted and supported (i.e., moot).

black: none of the above.

	Important: a node’s attribute shows its calculated global value and is not necessarily borne out by the tree it is in. That is, if a node is colored blue, then the node can be shown to be evident; however, it may not be the case that this particular tree shows that the node is evident. Also, the value of a node as shown is the most encompassing value that can be computed. Therefore, if a node is blue, then its term can be shown to be evident and no more, i.e., it is neither conflicted nor supported. It is also possible to show only a node’s value according to the tree it is in, i.e., its local value (see below).

Mouse actions

	Additional mouse actions in the explore window:

Click on a cell area: switch between showing global / local values.

Click on a cell’s label: minimize / unminimize the cell to hide / show the embedded tree.

Click on a node: collapse / uncollapse node.

Click on the canvas (drawing area): minimize / unminimize all cells.

	Tip: right click on a result (left pane) or a node (right pane) to invoke the pop-up menu which gives access to all available commands. Also, place the mouse pointer over a button (in this or any window) to see a brief description of the button’s function.

Explore window

Start an explore tree

	To start an explore tree, type in a term in a text entry field and click the Explore button. If there is no clause whose head matches the term, Visual Logic returns an error. Otherwise, it creates a new single-node tree containing the term. Place the mouse pointer over the node and hit the <space> key to expand the entire tree or <return> key to expand the tree one level.

The node selector

	The currently selected node is indicated by the node selector (the four small squares at each corner of the current node). The node selector follows the mouse. Hence, simply point the mouse to a node to select it. The node selector can also be moved via the keyboard (see keyboard bindings). All keyboard commands are directed toward the currently selected node.

Expanding nodes

	As indicated above, the entire tree / subtree can be expanded at once (<space> key) or one level at a time (<return> key). Also, branches of the tree can be expanded in arbitrary order. That is, the user is not restricted to a depth-first, left-to-right order of expansion as in Prolog.

To avoid indefinite expansion, explore always halts upon encountering one of the following:

a blocked node, i.e., one with no matching clause.

a failed expression, e.g., a comparison which fails or an ‘is’ (arithmetic) term which has one or more uninstantiated argument

a repeat node, i.e., a node which matches an ancestor node.

Meaning of node attributes

The attribute of each node denotes its value as follows:

green: ‘true’ or ancestry resolved node.

blue: evident node.

bright red: blocked or failed node.

dark red: repeat node.

	Important: unlike query mode, a node’s value in explore mode always pertains to the tree it is a part of. Hence, supported and conflicted values are not calculated, as these rely on information not present in a single tree.

	In addition, the elevation of the node denotes its state as follows:

raised: node is unexpanded (but can be expanded).

sunken: node is a choice point, i.e., node has been expanded but there are more matching clauses that are unused.

flat: node is either unexpandable or all matching clauses have been used to expand the node.

Backtracking

Backtracking a node (or ‘redoing’ in Visual Logic terminology) performs the following:

Prune the subtree below the node.

Revert the tree to the state immediately before the node was expanded.

Re-expand the node using (by default) the next unused matching clause.

	There are actually three ways of redoing. The procedure is the same; the difference lies in which choice point is selected.

Redo self, then children ([key): select the first choice point encountered in a preorder search of the tree, starting from the current node.

Redo children, then self (] key): select the first choice point encountered in a postorder search of the tree, starting from the current node.

Redo last (; key): redo the redoable node that was last expanded.

	For example, select a choice point (sunken node) and press the [key to redo that particular node.

Getting all solutions (Important!)

	Since nodes may be expanded and redone in arbitrary order, it is possible to miss certain solutions. In some circumstances, this may not be undesirable. That is, if the user chooses not to expand a certain branch, s/he may not be interested in the solutions that branch can give. In addition, there is a quicker way of generating all solutions: by using query mode.

	Nevertheless, if the user wants to see all solutions in explore mode, then s/he must observe the following rules: 1) always expand all nodes before doing a redo; and 2) always redo using the last (latest) choice point. Hint: this can be most easily accomplished by selecting the root node and alternately pressing the <space> and the ; key.

Keyboard bindings

	The selector can be moved via the keyboard. The number keys correspond to the navigation keys on the numeric keypad (with NumLock turned on).

4, 6 key (left/right arrow): move to left/right sibling.

8, 2 key (up/down arrow): move to previous/next node in preorder traversal.

7, 1 key (home/end): move to parent/child node.

9, 3 key (pgup/pgdn): move to previous/next tree.

	In addition, most commands are given through the keyboard as follow:

<space> key: expand entire tree/subtree from current node.

<return> key: expand current node one level.

- (minus) + (plus) key: collapse/uncollapse node.

; (semi-colon) key: backtrack starting at current node.

[(left bracket) key: redo children then self.

] (right bracket) key: redo self then children.

5 key: redo last.

0 key: expand entire tree starting at root node.

DEL key: delete current tree.

	As in all windows, all the commands listed above can also be accessed through the pop-up menu (right click on a node).

The watch window: additional control over expanding and redoing nodes

	Visual Logic provides additional control over expanding and redoing nodes through watch windows. Each node may have its own watch window. To open a watch window for a node, simply click on the node. A sample watch window may look like this:

who: a(X,Y)

Current value

 a(foo, bar) [evident]

Clauses [21,19,20]

 (19) a(john, mary)

 (20) a(0, 1)

 (21) a(foo, bar)

 (22) a(X,Y):-b(X,Y),c(Y).

	The first line shows the node’s term prior to expansion. The third line shows its current term and value. The fourth line lists the clauses that have been used to expand the node, ordered from last to first. (Each clause in the database is assigned an index number.) The last 3 lines list all matching clauses for the node. Clauses that are unused are displayed in a distinct font and color.

Left click on one of the clauses to perform the following actions:

If node is unexpanded, then expand the node using that clause instead of the first matching clause (as by default)

If node is expanded and the clause is not yet used, then expand the node using that clause instead of the next unused clause (as by default).

If node is expanded and the clause is already used, then backtrack to the point prior to node expansion using that clause. For example, clicking on clause (19) above will mark clause 19 and 21 as unused.

Other actions in the watch window:

Click on the first line to flash the node the watch window belongs to. (In case the user loses track of which window belongs to which node.)

Click on the fourth line (Clauses […]) to restore the node. (Mark all clauses unused.)

These commands can also be accessed through the pop up menu (right click). The popup menu has two additional commands:

Show listing: show this clause in the listing.

Query: switch to the query window and query this node.

	When a node is destroyed, its watch window (if one exists) is automatically destroyed. A watch window can also be manually closed in the usual way (the exact method depends on the particular GUI environment being used).

Step: quickly generating all possible clause trees

	Explore mode provides another way for quickly generating all possible clause trees. Enter a term and click on Step to generate all possible clause trees for that term and display the first tree. Subsequently, point to any node in the tree and press Forward (the 5 or ; key) to cycle through all the trees. Pressing Forward at the end of the cycle will produce a beep and at the same time reset the cycle to the beginning. The next Forward will repeat the cycle over again.

	In the explore window, step trees are distinguished from explore trees with a white background. (While cycling through the step trees, the white background will have a shadow until the end of the cycle has been reached.) Note that step trees are different from trees in query mode in that step trees are not necessarily closed. Instead, they are all the possible clause trees that can be generated for a given term.

Other windows

Results window

	The results window simply accumulates query results and list the terms in alphabetical order. Each term is displayed only once even if there are several clause trees for the term. The attributes have the same meaning as in the query window.

	Click on a term to send it to the query window and perform a query with the term as goal. Click with the middle button (or click both buttons if using a 2-button mouse) to send it to the explore window and start an explore tree with the term as the root. Alternatively, right click to invoke the popup menu.

The listing window

	The listing window lists the current clause database. The clause database does not necessarily contain the same clauses as the source file, as <- clauses are converted to contrapositive form (see Format of the source file). The user may search for a string by entering it in the text entry field. Click First to search for the first occurrence and Next to continue searching to the end of text.

The editor window

	The editor window allows the user to edit the current source file. The editor is a simplified version of Emacs and supports the usual navigational and editing keys. For example, C-v moves to the next screen, C-k kills a line, C-y yanks the kill buffer, etc. As in the listing window, text search is supported.

Click on Reconsult to save the file and reload it into the clause database. Note that reconsult will clear out all previous results in query and explore.

�PAGE �9�

�PAGE �5�

