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Abstract

This technical report describes methods for translating FOL (first-
order logic) into coherent logic in preparation for computation of the co-
herent theory by a Skolem Machine. The fore-and-aft translation methods
attempt to faithfully preserve FOL formulas already having coherent form.
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1 Introduction

In §7 of reference [I], Bezem and Coquand describe a scheme for translating
first-order logic wifs into coherent logic form. That general scheme is very
straightforward and satisfactory for converting many simple logical theories into
coherent logic form, in preparation for the application of a coherent logic prover
to the resulting coherent theory. The primary disadvantage of that translation
scheme is its preference for producing negative forms, and for insisting on proof
by contradiction. For example, a simple coherent first-order axiom p — ¢ is
translated into the coherent form true = —p | ¢ rather than into the positive
coherent form p = ¢. Also, proof-by-contradiction requires that a conjecture be
negated and the negation be shown to contradict the axioms. This preference
for negated forms can introduce unnecessary disjunctive cases into the resulting
proof searches.

In this report we describe deterministic translation schemas for FOL that
avoid injecting negative forms into coherent translations when possible. The
schemas preserve FOL inputs already having coherent form.

The subsection describes the typed quantifiers for the FOL input lan-
guage and FOL theories. Subsection describes the coherent logic target
language, colog .

In §2 we work several examples of the translation methods in preparation
for the formal presentation of the translation schemas in §3. The fore-and-aft
translations schemas of §3| transform each FOL wff of a theory into sequence
of colog rules. Simplifying transformations can be applied to produce a shorter
translation of a wif (fewer colog rules and more terse form). Translating all of
the wifs of a FOL theory (in order) thus produces a geolog theory when all of
the resulting colog rules are merged together.

The text form input language for FOL is similar to the TPTP language [5],
with various differences: For example, FOL does not use annotations for its
wifs. It is straightforward to translate between FOL form and TPTP forms.
Appendix [A] has more details about the syntax for FOL , and Appendix [B] has
worked examples using automatic translation of text forms of FOL .

1.1 typed quantification and FOL
We will assume that FOL quantifiers may be augmented with types. The wit
(Vz : k) ¢ (1)
is taken to be logically equivalent to the wif
(Vo) (k(z) = ¢) (2)

The key symbol k is presumed to be a unary predicate which can occur without
restriction in input wifs. Simarly,

(Fz: k) ¢ (3)



is equivalent to

(3z)(k(z) A ) (4)
An input wif of the form
is thus equivalent to the wif
(Vo) (k1 (z) = ka(), (6)

so the axiom specification orders the types k1 and ks by inclusion:
ki < ko (7)

When a positive wif has the form (Va)¢ without a named explicit type, we
assume that the key has a generalised form:

(Vx : dom) ¢ (8)

and similarly for (3z)¢. The dom type designates a universal domain. For every
explicit key x : g that appears in the theory we assume that the FOL wiff

(Vz : g) dom(z) (9)

is also an implicit axiom of the theory (even if not explicitly provided). Thus,
for each type t we have that t < dom. All types of things belong to the universal
domain. User programs may contain dom/1 (a unique unary dom) provided its
special role is understood. In fact, the programmer is required to supply domain
and closure axioms in many cases: See §4] for more on this topic.

Typed quantifiers are intended to restrict the range of application of the wif
within the scope of the quantifier. One might say that the type in a quantifier
unlocks or enables the application of the quantifier As an example, suppose that
we wish to specify that function f has domain real and range int. We may wish
to express this in the following convenient form

(Vz : real) int(f(z)) (10)

Including notations for quantifier keys allows one to express some informa-
tion about types in FOL. We are not presuming any other special semantics
for typed first-order logic, but we will specify translations to coherent logic in
Section |3| which are consistent with the intentions specified in and .

A FOL theory is a finite sequence of wifs. The wifs in a theory may have
typed quantification. Each wff in a theory is translated using the translation
schema of Section[3] Section[f|has a discussion of completeness issues regarding
such translations.



1.2 colog theories

colog is a language for expressing first-order coherent logic in a format suitable
for computations using an abstract machine. colog rules are used as machine
instructions for an abstract machine that computes consequences for first-order
geometric logic.

A colog rule has the general form

Al,AQ,...,Am:>01|CQ|...|CTL (11)

where the A; are atomic expressions and each Cj is a conjunction of atomic
expressions, m,n > 1. The left-hand side of a rule is called the antecedent of
the rule (a conjunction) and the right- hand side is called the consequent (a
disjunction). All atomic expressions can contain variables.

If n = 1 then there is a single consequent for the rule , and the rule
is said to be definite. Otherwise the rule is a disjunctive or splitting rule that
requires a case distinction (case of C or case of Cy or ... case of Cp,).

The separate cases (disjuncts) C; must have a conjunctive form

B17327"'7Bh (12)

where the B; are atomic expressions, and h > 1 varies with j. Any free variables

occurring in other than those which occurred free in the antecedent of the

rule are taken to be existential variables and their scope is this disjunct .
As an example, consider the colog rule

s(X,Y)=e(X,)Y) | dom(Z),r(X, Z),s(Z,Y). (13)

The names for colog predicates start with lower-case letters and the names
for colog variables start with upper-case letters, as for Prolog language syntax.
The variables X and Y are universally quantified and have scope covering the
entire formula, whereas Z is existentially quantified and has scope covering the
last disjunct in the consequent of rule. A fully quantified first-order logical
formula representation of this colog rule would be the coherent logic wif

(VX)(VY)[s(X,Y) = e(X,Y) VvV (3Z)(dom(Z) Ar(X, Z) AN s(Z,Y))] (14)

Now we come to two special cases of rule forms, the true antecedent and the
goal or false consequents. Rules of the form

true=C1 | Cy|... | Cp (15)

are called factuals. Here ‘true’ is a special constant term denoting the empty
conjunction. Factuals are used to express initial information in colog theories.
Rules of the form

Aq,Ag, ..., Ay = goal (16)



are called goal rules. Here ‘goal’ is a special constant term. A goal rule expresses
that its antecedent is sufficient (and relevant) for goal. Similarly, rules of the
form

Ay, As, o A = false (17)

are called false rules. Here ‘false’ is a special constant term denoting the
empty disjunction. A false rule expresses rejection of its antecedent.

The constant terms true, goal and false can only appear in colog rules as
just described. true plays the assumption role of T in a FOL theory and goal
plays the conjecture role of T. false plays the denial role of 1 in a FOL theory.
All other predicate names, individual constants, and variable names are the
responsibility of the colog programmer.

A colog theory (or program) is defined to be finite sequence of colog rules. A
theory may have any number of factuals and any number of goal or false rules.

Coherent form logical formulas, and a bottom-up approach to reasoning with
those logical formulas, finds its earliest precursor (1920) in a particular paper
by Thoralf Skolem [?].



2 Worked fore-and-aft translations

The concepts underlying fore-and-aft translation of first-order logic may seem
somewhat obscure initially. The naturalness of this approach requires a small
stretch of intuition ...

Ships of logic
sail on winds
fore to truth
aft to conjecture

We present three translation examples worked by hand using conventional
FOL notation (augmented for fore-and-aft modes). The Appendix contains
translations produced by an automated translator (colog ) using text input for-
mats of FOL .

Example 1. The wif ((a V b) — ¢) — d is converted to colog rules, as follows:

true = ((aVb) = ¢) = d.

((avbd) —c —>d,((a\/b)—>c):>7.

)
=(aVvb) = ((aVb) —

T =((aVvb) = o).
Sa, 5% = S(av).
not_a = a.

not_b = <—_\b

c= .

7:>d.

If any resulting geolog rule has an occurrence of a negated predicate —p in the
consequent of the rule the translator adds a corresponding consistency axiom.

p(X),not_p(X) = false.

where X is a sequence of variable arguments matching the arity of p. In this
example, no consistency rule is added.

The fore operator ﬁ is tried whenever formal implication is encountered.
The trial fails when an exceptional case is encountered while trying to proceed
in the fore direction. In this example fore translation goes smoothly, without
exception. The aft operator (...) always applies.

See Appendix for the results of automated translation.



Example 3 below will illustrate how fore translation can lead to an excep-
tional case, and the example illustrstes how to translate when an exception
arise.

The next example illustrates some fore and aft translation patterns using
quantified variables. Again, the fore translation goes smoothly.

Example 2. The FOL wif (Vx : a)(—p(z) — 3y : b)(3z : ¢)q(z,y,2)). has
coherent form. We expect the translation to preserve its coherence.

true = (Y(x : a)(=p(z) — Fy;0)(3z : c)q(x,y, 2)).
(V(z : a)(=p(z) = 3y : )3z : ¢)g(,y, 2)), a(X) = —p(x) = By : b)(3= : c)q(x, y, 2)(X).
—p(x) = 3y : b)(3z : ¢)q(,y, 2)(X), =p(x)(X) = Ty : b)(3z : )q(, y, 2)(X).

not_p(X) = “p(x)(X).

By : b)(3z : ¢)q(=, y, zj(X) =bY),(3z: ¢)q(z,y,2)(X,Y).
(32 )a(z,9.2)(X,Y) = e(2),q(z, 9, 2)(X. Y, Z).
q(@,y,2)(X.Y, Z) = q(X,Y, Z).

The geolog rules are verbosely expressed in order to illustrate translation
steps incrementally. Automated translators can skip or combine several steps
without loss of generality. Also, the variable correspondences are presented in
an intuitive fashion (e.g., formal variable z becomes X in the geolog rule).

See Appendix for the results of automated translation. Pay particular
attention to the terse translation!

The next example illustrates an exceptional case of fore translation. An em-
bedded formal implication will have to introduce a negation and be expressed
using disjunction in a coherent rule.

Example 3. Supose that ¢ = (Vz)((Vy)p(z,y) — q(z)). Note that there is
an embedded universal quantifier in the antecedent of the formal implication.
First, let us see how the exception to fore translation arises ...

true = (92)(Y9)p(@, y) — 4(x))-
(Vz)(Vy)p(z,y) = q(x)), dom(X),= ((Vy)p(z,y) = q(z))(X).
« (()p(@,y) = a@))(X), (F)p(z, 9)(X) = ¢(@)(X).

so « is replace by ...

(P9, y) = a(@)}(X) = ~(Fy)p(w, y)(X) | a(@)(X).




and now continue ...

~(Fy)p(z, y)(X) = By)w(, y)(X).
(Ely)—\p(x, Yy (X) = dom(Y), _‘p(l', y3<X7 Y)
—\p(x,yi(X, Y) = not_p(X,Y).

In this example, the attempt to use a fore translation for the embedded for-
mal implication leads to an exception: The primary translation schemas avoid
fore translation for a universal form (or negated existential). Such a transla-

tion must be redone with aft translation. See Appendix for the results of
automated translation.



3 Formal schemas defining fore-and-aft
translations

In the following tables, the right-facing arrow ﬁ indicates the “aft” direction
for a translation and the left-facing arrow t—) indicates the “fore” direction for
a translation (as was the case in the previous section).

Fig. [1| specifies the aft translations. These are essentially the same as those
specified in Reference [I] except for schema (4). Notice that schema (4) is the
only aft schema to introduce a fore translation. If the fore translation excounters
an exception then one uses the aft schema to translate the form.

Fig. [2] specifies the fore translations.

In the schemas, a sequence X always denotes an ordered sequence of variable
arguments that arose before the current schema is supposed to apply. For con-
venience, we assume that the lower-case variable letters in the FOL wffs become
upper-case when the corresponding variable gets elevated to arguments in the
geolog rules.

~(F: 9)p(Y) = (Vo : 9)=d(Y)
—a(z) = not_a(X) % when a is atomic

a(X), not_a(X) = false. % add consistency rule
% if not_a(X) occurs in consequent of geolog rule

(X) if translation of ? is NOT EXCEPTIONAL
$(X ) otherwise



When a fore translation is encountered at (A4), it either completes without
exception, and the rules it produces using translations from Fig. [2are included
in the converted theory, or an exception arises and the corresponding rules are
discarded, and then the aft version of (A4) is used to obtained the converted
rules.

Figure 1: Aft translations

(F1) 3(X), T (X) = dAd(X)
(F2) 3(X) = dVi(X)
Y(X) = $VH(X)
(F3  a) S3(X) = S@A)(X)
SH(X) = S@AD)(X)
b) S6(X), S(X) = S@ V) (X)

)
)
) G(X), S0(X) = 56— (%)
¢) EXCEPTIONAL : ...2?? = S(32)6(7)
)
)

£) F0)=o(Y) = S(¥a)e(Y)

g not:a(X) = —a(#) %when a is atomic
a(X), not,aA(X) = false. % add consistency rule
% if not_a(X) occurs in consequent of geolog rule
— 5 —
X)= o — .
B(X) = 5 B(X)

U (3) = 6= B(X)
(F5) EXCEPTIONAL : ...777 = (V&)p(V

(_ A A
(F6) 9(X), 9 (Y, X) = (Bz: 9)d(Y)
— A
(F7) p(T), g1(X1),- -, gk (Xx) = p(£)(T).
for a predicate p, where terms T are substitution results for terms t, and
<x1:01,...,Tk: gr > are the variables in T which do not occur in p( )

(F4)

Figure 2: Fore translations

The exceptional cases involve the obligation to provide a fore translation for
a universally quantified wff. We describe an alternative approach for coherent
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conjectures in Section [f} The translation methods are sound. Issues of com-
pleteness are discussed in Section [b} We illustrate the required complication in
rule (F7) using another example.

Example 4. Consider (Vz)(Vy)(p(x) — g(x,y)) and notice that the antecedent
of the formal implication does not contain the universal variable y.

true = (92)(79) (p(z) = 4(@>))-
V2)(Py) (p(@) — (@, 9)}, dom(X), dom(Y) = p(@) — q(z, y)(X,Y).
(@) = (@, g)(X, V), p(@)(X,Y) = q(@, y)(X, V).

« p(X), dom(Y) = p(@)(X,Y).

(@, (X, Y) = g,y).

Notice at * how dom(Y) is needed in the antecedent to universally quantify
Y. Otherwise the occurrence in the consequent would be interpreted as an exis-
tential variable in the consequernt of the geolog rule. See Appendix for the
results of automated translation.

Coherence Theorem. A terse fore translation of a FOL wff already having
coherent form preserves its coherent form.

Examples 3 and 4 illustrate the theorem well.

11



4 Domain constants and function closure axioms

When colog translates the following (text form) coFOL theory

(q(£(a)) => goal).
p(a).
1[X]:q(X).

we get the colog theory

q(f(a)) => goal.

true => p(a).

true => dom(a). % domain axiom

dom(X) => q(X).

dom(X) => dom(f(X)). % function closure axiom

Fig. [3|illustrates a colog proof for the program.

trueg

p(a)

q(f(a))s

goalg

Figure 3: Proof tree

Tt is clear that the domain axiom and the function closure axiom (in the colog trans-
lation) are required to effect the proof of the query. The colog translator au-
tomatically supplies them when it translates axioms or conjecture that contain
symbolic constants or functions. The Basic Completeness Theorem in the
next section requires them.

The colog translator detects constant ¢ as if it had been explicitly declared
in a FOL program as

dom(c). (18)

12



and it detects a function symbol f and presumes that the intended closure is

Va1, ... xp) dom(f(x1,...,2,)). (19)

for any n-ary function symbol f appearing in the theory.

So, for example, if a FOL program contains a literal p(f(a,b), c), colog will
presume that a, b, ¢ are constants and that f is a binary function symbol of arity
2.

In effect, colog computes colog code for computing the Herbrand universe us-
ing the domain predicate ‘dom’ and the constants and functions in the FOL pro-
gram that it translates.

For domains other than dom the programmer must supply function closures.
For example, the axioms

int(3) (20)

(Vz :int,y :int) int(z +y) (21)

would express the closure for the symbolic domain int under symbolic addition
+ and that 3 is in domain int,

int (3).
''[X:int,Y:int]: int({x+y}).

These axioms are not automatically generated and must be supplied by the
FOL programmer.

13



5 Completeness issues

The worked examples so far are intended to illustrate the mechanics of fore-
and-aft translation when applied to individual FOL wiffs. In this section we will
more carefully describe the translation of FOL theories into geolog theories and
the application of a coherent logic prover to the resulting geolog theory.

Recall that a FOL theory is a finite sequence of wffs. The translator for the
colog system translates the FOL theory wiffs in order and adds the resulting
geolog rules to the geolog theory. Any consistency rules are added at the begin-
ning of the geolog theory and the geolog form of the dom rules [J] are added at
the end of the geolog theory.

A FOL conjecture is a wff that is typically the first wff in the FOL theory.
A goal form conjecture is expressed in the following manner:

v — goal % goal conjecture (22)

where the intent is to find a positive proof for the wif v. A refutation form
conjecture has the form

-y % refuted conjecture (23)

where the intent is to find a refutation of —y (proof for 7).

A conjecture is a wif which is proposed as a logical consequence of the other
wifs in the FOL theory, for which a proof is desired. If no proof is attainable,
the programmer would like colog to compute a model which serves to disprove
the conjecture. In general, FOL is not decideable, so one must be content with
limited completeness results.

Basic Completeness Theorem. Suppose that v,aq,...,0, is a FOL pro-
gram and that v is a logical consequence of aq,...,ca,. Then the fore-and-aft
translation of =y, aq,...,an into a geolog theory (including all of the domain
azioms and function closure azioms) has a refutation proof: a saturated geolog
tree having false leaves.

The theorem remains true when all of the wifs are positive (contain no logical
negation) and the conjecture has the special form . Notice, however, that
negation will be introduced if -y is a universal statement. See the next section
for a description of coherent conjecture, which do not require injecting negative
forms.

Theories containing logical negation do not necessarily have proofs by Skolem
Machine for positive form conjectures. For example, the FOL tautology p V —p
has no coherent proof when posed as a positive conjecture p V —p = goal.

There may be a close association between intuitionistic proof and positive
form conjectures and proof by Skolem machine.

14



6 Coherent goals

Special forms of 7y in are called coherent goals:

v = (Vi) (24)
v = (V&)(3A)CL V...V (37)Ch (25)
v = (¥&)a = (32)G V...V (3G (26)

where «, (; are conjunctions of atomic wifs, (k > 1) and possibly there are no
universal variables.

In Reference [2] we defined coherent queries to have the form (but with
no universal variables).

Notice that fore translation of v — goal will raise the exception if there are
universal variables. We describe here an alternate translation scheme for these
coherent goals. The universal variables in the quantifier (V) are replaced by
unique Herbrand constants. This approach corresponds to the mathematical
tactic that says that, for example, if $(@x) can be derived, for a general value
@z of the variable x, then (Vz)¢(x) is also derived. The Qx constant stands
for a general x. See Reference [3] for a discussion of this technique in a more
general logical context. Each of the forms , , is converted to a new
goal form.

Let us suppose that & = x1, ..., 2% and that Qxq, ..., Qx,(k > 0) are unique
constants that can replace the variables. For any unquantified wff § containing
those variables, let 3’ be the same wif but with the variables replaced by the
corresponding constants. The alternative translation schemes for conjectures
v — goal are as follows:

The case of (24) is translated as if it were o’ — goal.
The case of (25)) is translated as if it were 321)¢; V ...V (32)¢;. — goal.
And the case of is translated as if it were two axioms.

o (27)

32)¢ V..V (F2) ¢, — goal (28)

Example 5 provides an excellent example illustrating the translation of an
interesting mathematical theory. We use the last case for translating the
goal. The original formulation of this problem for coherent logic was described
by Marc Bezem: The Diamond Property (DP) in rewriting theory states that,
if © rewrites to both y and z, then the latter two rewrite both to some u (all in
one step). We prove that if some rewrite relation satisfies DP, then its reflexive
closure also satisfies DP. ”Reflexive closure” means adding point loops to every
point. Here, we provide a FOL formulation for DP.

15



Example 5.
(Va,y, z)(re(x,y) Are(z, z) = (Jw)(re(y, w) Are(z,w))) — goal
V)X
Ve, ) (X =Y =Y =X).
Vae,y,2) (X =Y ANY =2) > X =2).

(
(
(
(
(Vo,y,2)(X =Y Are(Y, Z)) — re(X, Z)).
(Va,y)(X =Y — re(X,Y)).
(Vo,y)(r(X,Y) = re(X,Y)).
(Vo,y)(re(X,Y) — (X =Y Vr(X,Y))).

(

Y, y, 2)((r(X, Y) Ar(X, 2)) => (Ju)(r(Y,U) Ar(Z,0))).

Notice the coherent conjecture (the goal rule). See Appendix for the
FOL version, an automated translation and a nice proof tree generated by
colog .

Now, coherent conjectures for coherent cofol programs are translated to
colog theories with proofs if the FOL program is logically valid. This result
follows (more or less directly) from the completeness theorems in Reference [2].
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7 Related topics

7.1 optimizations for negative normal tranlations

Chapter 1 of A. Polonsky’s thesis [4] studies translations from FOL to geolog
which are derived from the negation normal forms of the axioms and conjecture.
That approach generates collections of translated theories which contain various
combinations of contrapositives of the initial negative forms. Heuristics are used
to generate target geolog theories, with the intent of generating geolog theories
having smaller geolog trees (shorter proofs). The colog prover has refinements
that were designed in order to improve the proof performance for these negative
normal translations. It is good news that many of the refinements work for the
fore-and-aft translations also. In particular, colog implements something called
QEDF search, which is a particular search strategy for a Skolem Machine, see
Reference [?].

7.2 generalized Herbrandization for universals

It may possible to specify fore translations for universally quantified forms in a
more general way, using some tricks. The general approach requires introducing
herbrand functions rather than constants as explained in §6] After some initial
experimentation, this approach has been abandoned for the present. It seems
that the new schemes make some translations too obscure, even though this
would obviate the need for the exceptional cases for translations.

7.3 typed first-order logic

The stated conventions for keyed quantifiers and obviate the need to use
special logical semantics for interpretations of FOL having keyed quantifiers.
Thus, when the Basic Completeness Theorem refers to ”logical consequence”
that means the classical concept of logical consequence, not a modified interpre-
tation regimen where the keys are interpreted using type theory (or set theory)
artifacts. The intended interpretations are classical first-order logic interpreta-
tions or, after translation, constructive geolog trees.

17
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A  Guide to FOL input notation used by colog

Text input FOL syntax resembles that of the TPTP logic language. Logical
quantifiers use the bracket notation, e.g. ! [X:t]:, ' [X]: or ?[X:t]: and sev-
eral variables may be quantified in one expression, e.g., ! [X:t, S:’seq<t>’]:
. The universal quantifier designator is ! and the existential quantifier desig-
nator is 7.

FOL variables need to start with a capital letter, e,g, Var.

The logical connectives are &, |, , =>, and <=> (and, or, not, if-then,
if-and-only-if, resp.) which are written infix. Subformulas formed using logical
connectors require braces {...} or parens (...).

{{p & qF => {r | s}}.
(p&q@ =>A{r | s¥. // mix {..} or (..) for logic
XD { p(X) => 7[Y]:{ q(Y) & r(Y) }.

However, both & and | can have multiple juncts. For example, {p & q & r}
is read and stored as {p & {q & r}} .

Predicates and functors can be written in the conventional manner, such as
p(X,a). Functor names start with a lower-case letter. A functor expression is
read in context. For example,

{ pl£(a),b) & q(a) }

is read so as to make p and q predicates, f is a function, and f(a) is a term.
Functors may have names that are quoted using either single quotes or double
quotes (as in *1ist(t)’ in the following sample theory).

Functors can also start with $. This allows the colog reader to translate
functors intended for evaluation in later versions of colog. However, at the
present time, colog does not implement any evaluation and $functors are treated
symbolically, like other functors.

A FOL theory is a finite sequence of wifs, each of which is terminate with
a period. Wffs may extend over several lines. The following example illustrates
with a small theory of lists.

// goal test
{ member(a,add(c,add(b,add(a,nil)))) => goal }.

// data
{t@ & t) & t(c) }.

// constructor logic

’list(t)’ (nil).

V[X:t]: ’list(t)’(add(X,nil).
'[X:t,R:’1ist(t)’]: ’1list(t)’(add(X,R)).

// accessor logic
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'[X:t,R:’1ist(t)’]: member(X,add(X,R)).
'[X:t,Y:t,R:’1ist(t)’]: { member(X,R) => member(X,add(Y,R)) 7.

// empty list
empty(nil) .

FOL recognizes several special infix predicates: = != < <= > >= == I==,
These are only symbols, however. For example to use = as an equality will
require that the FOL theory contain the usual equality axions.

'[X]: X=X.
VX, Y]: {X=Y => Y=X}.
V'[X,Y,Z2]: { {X=Y & Y=Z} => X=Z }.

FOL recognizes infix binary operators * + / - #. The infix - must be
followed by a space. There is one symbolic prefix operator - which should not
have a space following it. (The former might indicate a subtraction and the
latter a negative.)

Compound terms constructed with operators must be fully parenthesized
(no braces) , as in

?[X]: X = ((f(@) * c) + b).

TPTP [5] first-order logic theories (THP, etc.) can be easily translated to
FOL theory form. Typed TPTP theories (TFF) require special handling of
type declarations for translation to FOL . CNF theories can be translated as
sequences of FFOL disjunction wifs, but this often leads to a FFOL theory which
is inefficient for solving, so it is generally preferable to translate the first-order
logical theory to FOL rather than its CNF translation.
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B The worked FFOL examples auto-translated to
colog

The text input formats for FOL are similar to those used for the TPTP system.

B.1 Example 1 automated
FOL input:

((a | b) =>¢c) => 4d).

Verbose translation:

true => >>{(((a | b) => ¢c) => d)}’.

>>{(((a | b) =>¢c) => d}’, <<{((a | b) => )}’ => d.
<<"{(a | b)}’ => <<{((a | b) => )}’.

2<<{c}’ => '<<{((a | b) => c)}’.

r<<~{a}’, '<<"{b}’ = < {(a | B)}.

not_a => ’<<~{a}’.

not_b => ’<<~{b}’.

c => '<<{c}’.

Terse translation:

not_a, not_b => d.
c => d.

The terse forms are obtained from the verbose forms using a combination of
fore and aft ”folding” of the geolog rules. It is the terse forms of translation
that are typically used as the finished translation of the FOL wifs.

Colog only adds consistency geolog rules for predicates having a negative
occurrence of the predicate in some resulting geolog rule, so translation of this
simple input wif yields no consistency axioms.

B.2 Example 2 automated

FOL input:

'[X:al: ("p(X) => ?[Y:b,Z:c]:q(X,Y,2)).
Verbose translation:

true => >>{![X:a]: ("p(X) => ?7[Y:b,Z:c]:q(X,Y,Z))}" .

> >{1[X:al : C"p(X) => ?[Y:b,Z:c]:qX,Y,Z))}’, a(X) =>
>>{("p(X) => ?[Y:b,Z:c]:q(X,Y,Z))}’ (X).

> >{("p(X) => ?7[Y:b,Z:c]:qX,Y,ZN}F X)), <{"pX)}P X)) =>
>>{7[Y:b,Z:c]:q(X,Y,2)}’ (X).

<<Hp(XDF X)) = <<A{p(X}F’X).

not_p(X), a(X) => "< {p(X)}’X).
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2>>{7[Y:b,Z:c]:q(X,Y,2)}’ (X) => b(Y), c(Z), qX,Y,2).
a(Z) => dom(Z).
b(Z) => dom(Z).
c(Z) => dom(Z).

Terse translation:

a(X), not_p(X) => b(Y¥), <c(2), q(X,Y,2).
a(Z) => dom(Z).
b(Z) => dom(Z).
c(Z) => dom(Z).

We see that the translator does indeed preserve the coherence of the FOL wif.

B.3 Example 3 automated
FOL input:
VXD (VLY :p(X,Y) => q(X)). // Note universal antecedent of =>
Verbose translation:
p(X0,X1), not_p(X0,X1) => false.
true => ’>>{![X:dom]: (! [Y:dom]:p(X,Y) => q(X))}’.
?>>{! [X:dom] : (! [Y:dom] :p(X,Y) => q(X))}’, dom(X) =>
>>{ (1 [Y:dom] : p(X,Y) => q(X))}’(X).
>>{(![Y:dom] :p(X,Y) => qXN}P’ X)) =>
>>{I[Y:dom] :p(X,V)}’(X) | qX).
)>> {1 [Y:dom] :p(X, YD)}’ (X) => *>>{?[Y:dom] :"p(X,V)}’ (X).
’>>{7[Y:dom] : "p(X,Y)}’ (X) => dom(Y), ’*>>{"pX, N} X,Y).
> >{"p(X, )} (X,Y) => not_p(X,Y).
Terse translation:

p(X0,X1), not_p(X0,X1) => false.
dom(X) => dom(Y), not_p(X,Y) | q(X).

Notice that this translation does require addition of a consistency rule, since
the negation is introduced into the consequent of the first (terse) geolog rule.

B.4 Example 4 automated
FOL input:

X, YD (p(X) => q(X,Y)).

Verbose translation:

true => ’>{![X:dom,Y:dom] : (p(X) => q(X,¥))}’.

»>{![X:dom,Y:dom] : (p(X) => q(X,¥))}’, dom(X), dom(Y) =>
>{(pE) => qX,)}F’ X,Y).

>{(p&) => X, P E, D, <{pH}F &, Y) = qX, 1.

p(X), dom(X), dom(Y) => ’<{p(X)}’(X,Y).
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Terse translation:

dom(Y), p(X) => q(X,Y).

B.5 Example 5 automated
The FOL program (file dpe.fol):

// positive-form conjecture

(' [X,Y,Z] : ((re(X,Y) & re(X,Z)) => ?[W]:(re(Y,W) & re(Z,W)) ) => goal).
// axioms

1[X]:X = X.

HX,Y]: (X=Y => Y=X).

V[X,Y,Z2]: ((X=Y & Y=Z) => X=Z).

V[X,Y,Z2]: ((X=Y & re(Y,Z)) => re(X,Z)).

IIX,Y]: (X=Y => re(X,Y)).

X, YD (x(X,Y) => re(X,YV)).

X, YD (re(X,Y) => (X=Y |r(X,V))).

VX,Y,Z2]: ((r(X,Y) & r(X,Z2)) => 7[U]:(x(Y,U0) & r(Z,U0))).

Terse (coherent-form, terse) translation to colog :

/*1x/ re(@Y,W), re(Q@Z,W) => goal.

/*2%/ true => dom(Q@Z), dom(@Y), dom(@X).
/*3%/ true => re(@X,QY), re(@X,0Z).
/*4%/ dom(X) => X=X.

/*5%/ X=Y => Y=X.

/*6x/ X=Y, Y=Z => X=Z7.

/x7x/ X=Y, re(Y,Z) => re(X,Z).

/%8%/ X=Y => re(X,Y).

/*9%/ r(X,Y) => re(X,Y).

/*10%x/ re(X,Y) => X=Y | r(X,Y).

/*11x/ r(X,Y), r(X,Z) => dom(U), r(Y,U), r(Z,U). /* Existential */

Notice that the colog translator automatically generates the Herbrand constants
for the colog theory. (A verbose translation yields 48 rules.)

The colog prover automatically generates the proof tree (and the Latex pic-
ture) displayed in Fig[4]
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trueg

dom(@Y1);

dom(@Z1),
dOn‘l(@Xl):;
re(@X1,QY1),

re(QX1, QZ1)s

QY1 = @Y1,
@X1 = @X1s

re(QY1, QY1)
re( Zl,@zl)lo
re X17@X1)11

@Xl = @Y112 I‘(@X17@Y1)16

@Y]. = @X113 @X]. = @2117 I‘((@Xl7 @21)21

re(QY1,Q@Qz1);, @Z1 = @X1;5 dom(sk0)2

goalss re(Qz1,QY1);s r(QY1,sk0)s
goaly r(QY1, sk0)2s
sk0 = Sk025

re(sk0, sk0)as
re(QY1, sk0)2r
don‘l(skl)zs
r(QY1, skl)o
r(Qz1, sk1)3o
sk‘l = skls;
re(skl, skl)s,
re(QY1, sk1)as
re(Q@QZ1, skl)as

goalss

Figure 4: colog proof tree for dpe.fol
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