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 §1   Heyting term algebra, modulators and rules
  
 All of the examples in this lecture are intended to 
 illustrate a metalogic based upon Heyting algebraic logic
 terms embedded into autolog code.  It is possible to 
 employ other algebraic logics in a similar manner (a 
 topic for subsequent lecture  notes).
  
 For quick reference to background information regarding 
 Heyting algebra, see 
    
      https://en.wikipedia.org/wiki/Heyting_algebra
  
 In this lecture note, we will use the following symbolic
 notation for the intended Heyting operators:
  
    meet          ∧
    join          ∨
    less or equal ≤
    residual      $
    negation      ¬
    least/bottom  ⊥
    greatest/top  ⊤
  
 These notes were written using the autolog editor, in 
 order to capture symbolic notations faithfully.
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 Most of the examples describe how one can write codes 
 that express some intended metalogic either as term 
 algebra or a literals in autolog.  Small programs are also
 given so as to illustate autolog computations.
  
 There are two styles for coding algebraic logic axioms.
 One style employs coherent form rules and the other 
 employs equality modulators (implemented as rewrite).
  
 As a first example, let us carefully consider the 
 difference between the autolog modulator
                                                           
      A∧B=B∧A.      // term modulator
                                                           
 and the autolog rule                                      
  
      A∧B => B∧A.  // inference rule
                                                           
 Both express similar intentions but result is different 
 behaviors for the inference engine.  Both forms are 
 "autolog inferences".  To illustrate the difference 
 suppose that we have only the one fact
                                                           
      true => (a∧b)∨c.                                  
                                                           
 and the start of an inference tree
  
                true
                  |
               (a∧b)∨c
                  |
                  ?
  
 If the term modulator is part of our theory then we 
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 also have the tree term inference
  
                true
                  |
               (a∧b)∨c
                  |
               (b∧a)∨c   
               
 abtained by matching the left side of the modulator
 in the tree term (a∧b)∨c, substituting a∧b by b∧a and
 asserting the tree term (b∧a)∨c. The modulator can 
 act at the term level, the rule can only infer at 
 literal level.
  
 On the other hand, the rule would not apply to terms 
 inside a tree term, so the last inference is not possible 
 possible. Obviously, modulators are more active in such 
 situations. If the term modulator is included in our 
 program, then the inference rule is redundant.  
  
 A modulator equality 
  
      L=R.  
  
 substitutes instances of L (the left Lterm) in a fact
 tree term by the corresponding instance of R (the right 
 Rterm), and not vice versa. 
                                                       
 A match regimen for a modulator can be illustrated       
 using a simple example. Suppose that our theory is
                                                           
    true => a=a+c.   
    a=b.           // M (rewrite a as b)
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 Here is a simulation of branch action for this theory
  
               true
                |
               a=a+c    0
            ----|----
               b=a+c    1
                |
               a=b+c    1
            ----|-----             |
               b=b+c    2
                |x
               b=b+c    2  ignored, not new
  
 In this simulation, modulator M is used on each of the 
 individual instances of a in the fact at stage 0, 
 producing modulants at stage 1. In stage 2, M modulates 
 remaining instances of a in the proof terms of stage 1. 
 Any repeated fact is ignored (not actually added to the 
 branch). An incremental saturating modulation regimen such
 as this would, over successive stages, assert a complete 
 branch set of modulants. 
  
 Generally speaking, both modulators and definite rules 
 use a level-saturation methodology (described more fully 
 in the Autolog design document). 
                                  
 At present, the only way to index modulators is via
 the Lterm (operators or constants). Thus, for example,
 if we wan t to include the modulator
  
   A∨B=B∨A.
  
 it should be the case the modulator makes sense for 
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 ANY instance A∨B that might occur on a proof tree branch.
 This means that variables A and B are "virtually indexed" 
 by occurring in the Aterm of the modulator, rather than 
 some "esplicit index" such as  A:T and B:T for some T.
 We leave this as an open design issue at this time.
                
 ----------------------------------------------------------
  
 §2  Folding and unfolding metalogic rules
  
 An "unfolding" rule replaces a term algebra expression by
 literals. Unfolding rules for ∧ and ∨ could be
       
       ⊥ => false.
      A∧B => A, B.
      A∨B => A | B.
  
 A "folding" rule replaces literal terms by an appropriate 
 term algebra expression.  Unfolding rules for ∧ and ∨ 
 could be
  
      true => ⊤.
      A, B => A∧B.
      A, B:prop => A∨B.
  
 Note that a literal like 'B:prop' (for example) is needed 
 to fix a referent/index for B in the consequent of the 
 second rule.  A rule like the following would not be what 
 is really intended 
  
      A => A∨B.
  
 because an application of this rule would result in a 
 Skolem constant replacing 'B' in the consequent, which 
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 would entail "some" B rather than "any" B.  However, the 
 literal term 'B:prop' employed above is just an example, 
 and in practice some other indexing for B might be 
 appropriate.  
  
 {The folding and unfolding rules given here as examples.
 Other versions are possible, and sometimes necessary,
 as in the case of the typing above. Sometimes it is wise 
 to type all term variables as an indexing ploy, to limit 
 the reference of term variables and for efficiency of 
 autolog computations.}
  
 For $, we might have 
  
      A$B, A => B.
  
 and/or, as a modulator,  
  
      A$B ∧ A = B.
  
 For ¬, we have 
  
      ¬A, A => false.
  
 Notice that this rule is preferable to 
  
      A, ¬A => false.
  
 It is usual for autolog to satisfy antecedent literal 
 terms from left-to-right.  ¬A is indexed via its operator
 ¬, and a literal match (using an index table) provides a 
 value for A, which either does or does not match the 
 second literal of the preferred form of the rule. In the 
 alternate rule, much more work may be required to 
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 first achieve a match for A and then locate ¬A.
  
 Alternatively, we might employ modulators
  
      ¬A ∧ A = ⊥.
      ⊥ = false.
  
 For these examples, the choice of rule/modulator would be
 a programming style decision.  Additional axioms could be 
  
      P => ¬¬P.  // better:
         P:prop, P => ¬¬P.
      A∧¬B => ¬(A$B).
      ¬(A$B) => ¬¬A ∧ B.
  
 The following modulator might be specified for some 
 autolog programs, but would be considered as unsound 
 as a substitution rule for P's not in an  heyting
 algebra logic context.
  
        P=¬¬P.     // NO 
  
 To illustrate the style of reasoning with metalogic terms,
 consider the following problem.
  
 EXAMPLE 1.
      // rule has types, impredicativity, indexicality
      P:T$prop, Q:T$prop, X:T, P(X) => P(X)∨Q(X).  // #1
      //  coherent unfolding for ∨
      P∨Q => P|Q.                                  // #2
      true => p:int$prop, q:int$prop, a:int.    // data
      p(a) => qoal.
      q(a) => false.
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 which has a proof tree
    
                 true
                  |-   data
              p:int$prop    
                  |
              q:int$prop
                  |
                a:int
                  |-   #1
             p(a) ∨ q(a)
              /  #2   \       
           p(a)       q(a)
             |         |
            goal     false
  
 ----------------------------------------------------------
  
 §3  "ex falso (sequitur) quodlibet" 
  
 "From contradiction every statement follows" -- 
 the principle of explosion -- but not for autolog 
 inference generally. To specify EFQ explicitly for the 
 metalogic under consideration, a rule like 
  
      ⊥ => P.
  
 is NOT going to work since this only says, in effect, that
 some literal P can be inferred from bottom, not that all 
 can be inferred. (That P is not indexical in the rule is 
 also a problem).
  
 We might attempt to program EFQ as follows
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      ⊥, P:prop => P.  
  
 via a qualifying type judgement in the antecedent of the 
 rule. This approach also indexes P. To enforce EFQ, rules 
 would need to index all literals and include a similar 
 inference for each indexed literal possible. One might 
 only index certain chosen literals (smaller explosion). 
 For example, consider this problem.
  
 EXAMPLE 2.
    true => ⊥, 1:int,   
            p(2),
            q:int$prop .             
    ⊥, P:int$prop: X:int => P(X).    // Explode these.    
    q(A) => goal.       // via explosion specification
  
 Consider the following proof tree
  
           true
             |
             ⊥
             | 
           1:int
             |
         q:int$prop
             |
            q(1)
             |
            goal
  
 Show that 
  
      p(1) => goal.
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 cannot be proved, because 'p' does not fit the explosion 
 profile.  The example (and this section) is intended to 
 illustrate EFQ re autolog, nor to promote imposing EFQ,
 nor to promote avoiding EFQ. Either promotion would 
 require more motivations.
  
 Another well known form of argument for explosion works
 by employing a rule like
  
      P => P∨Q.
  
 where one gets to impose that Q is "anything". However, 
 the coherent form rule only says P∨Q for some Q 
 (not all). In order to get irrelevant derivations, we 
 could try something like the following, deriving that 
 unicorns exist.  But again, not everything follows 
 automatically.
  
 EXAMPLE 3. 
      true => p, ¬p.
      true => unicorns_exist:relevent.
      P, Q:relevent => P∨Q.  // need to index Q.
      ¬P ∧ (P∨Q) => Q.
      unicorns_exist => goal.
  
                  true 
                   |
                   p
                   |
                  ¬p
                   |
           unicorns:relevent
                   |
               p ∨ unicorns_exist
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                   |
              unicorns_exist
                   |
                  goal
  
 I left out the rule 
  
         ¬P,P => false.  
  
 (which is indexical) because false in a derivation 
 frame would have stopped the expansion of the branch, 
 and that also would have stopped derivation of the 
 irrelevant.
 ----------------------------------------------------------
  
 §4  Tree frames for metalogic
  
 An intuitionistic Kripke-like frame can be defined for 
 the tree structures computed for a metalogic program by 
 a Skolem machine.
  
  
 Suppose that our autolog theory includes the following 
 axioms/rules:  
  
      A∧B => A, B.
      A∨B => A | B.
      A$B, A => B.
      ⊥ => false.
      A$⊥ => ¬A.  // or  modulator 
                  //   {A$⊥ = ¬A.}
  
  
 DEFINITION: A "branch (or frame) set" is a set of branch 
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 terms all contained in one contiguous Skolem tree branch. 
 A branch frame "forces" a term provided that term can be 
 deduced on a tail for any branch containing the branch set
  
  
  
 The following statements 1-4 are consequences of this 
 definition of forces, and resemble the Kripke conditions
 for intuitionistic logic frames: 
  
 1-  If P is a term, branch set W forces P, and 
     W ≤ U (subset) for branch set U, then U forces P. 
     (monotonicity)
  
 2-  If A∧B is term and branch set W forces A∧B, 
     then W forces A and W forces B.
  
 3-  If A∨B is a term and branch set W forces A∧B, 
     then W forces A or W forces B.
  
 4-  If A$B is a term, branch set W forces A, 
     then W forces B.
  
 DEFINITION:  If no branch set U ≥ W forces A, 
 then W "supports" ¬A.  
  
 Notice that in EXAMPLE 1, the initial branch set
 (up to the application of rule #1) forces
 p(a) ∨ q(a), but that no lower specific branch term 
 is forced.
  
 EXERCISE 1.  Formulate a reasonable definition of the 
 notion of a term algebra corresponding to an autolog 
 problem.  (Hint: "Herbrand universe".)  Give an example 
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 where neither P nor ¬P is forced, so ¬P is supported, 
 for a term P in the relevant term algebra of the problem. 
  
 EXERCISE 2. Express the rules (1-4) as autolog rules 
 using a predicate forces(W,P).  
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