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Abstract

Propositional theories are translated to coherent logic rules using
what are called fore-and-aft templates. In order to illustrate the es-
sential concepts this report also describes a prototype translator that
is implemented using an ANTLR4 grammar, parser and its attendant
tree-walking translator. The target of the translation is the colog lan-
guage for coherent logic. Thus the design described here is one way
to compile propositional logic problems for computation by a Skolem
Machine [2]. The intention is to extend the fore and aft methods to a
constructive geometrization of typed first-order logic using a machine
logic framework.

The fore-and-aft translator is constructive because its use leads to
translations of propositional theories or problems that are sound for
intuitionistic logic. The question of intuitionistic completeness of the
translation is problematic.

1 A Grammar for propositions

The following ANTLR 4 [1] grammar1 is used to illustrate a constructive
translator of propositional formulas into coherent logic. The coherent logic
formulas that result are colog language rules for computation by a Skolem
Machine.

1All embedded codes are verbatim.
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/**

* Prop.g4

* An ANTLR 4 grammar for Propositions.

* 2015.

*/

grammar Prop ; // # labels for formula forms

// A theory is one or more assertions.

theory : statement+ ;

// A propositional statement is either

// formula ’.’ axiom

// formula ’?’ conjecture

// formula ’.?’ hypothetical

statement : f=formula end=(’.’ | ’?’ | ’.?’) ;

//////////

// A formula has labelled cases, in order of precedence

// N.B. position of <assoc=right>, vs what ANTLR4 book says

///////////////

formula :

p=PROPOSITION # literal

| NOT f=formula # negation

| f1=formula IFF f2=formula # equivalence

| f1=formula AND f2=formula # conjunction

| f1=formula OR f2=formula # disjunction

|<assoc=right> f1=formula IFTHEN f2=formula # implication

| ’(’ f=formula ’)’ # parenthesized

;

// Note all left-associative except ’->’

// A proposition, the literal case for a formula

PROPOSITION : [a-z]+ [0-9]* ;

// The logical connectives lexed

NOT : ’~’ ;

IFF : ’<=>’ | ’=’ ;

AND : ’&’ ;

OR : ’|’ ;

IFTHEN : ’=>’ ;
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WS : [ \t\n\r]+ -> skip ; // ignore all whitespace

SL_COMMENT : ’%’ .*? ’\n’ -> skip ; // single line

ML_COMMENT : ’(*’ .*? ’*)’ -> skip ; // multiple line

The logical operators are all (automatically) left associative except im-
plication which is declared as right associative. The tightness of the binding
order of the logical operators is in accordance with the order of definition in
the grammar code, negation ~ being most tightly binding, and implication
-> the least; otherwise parenthesize as usual. The # labels in the grammar
are used to define listener methods associated with the generated parser.

For this translator ’=>’ is used of if-then and ’<=>’ and ’=’ are taken
as synonyms for if-and-only-if. Both P<=>Q and P=Q are replaced by (P=>Q)

& (Q=>P) before fore-and-aft translation. In this regard, other translation
designs would be possible.

2 Fore and Aft translation templates

A propositional statement (see the grammar) is a propositional formula
followed by punctuation.

• axiom
P.

• query
Q?

• hypothetical
P => Q.?

where P and Q are propositional formulas. A propositional theory (see the
grammar) is a finite sequence of propositional statements. Informally, a the-
ory is also called a problem.

The initial translation of an axiom to colog rule is
true => ’[P}’.

The initial translation of a query is
’{Q] => goal.
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And the initial translation of a hypothetical is
true => ’[P}’.
’{Q] => goal.

A fore form ’{P]’ represents evidence pending, whereas an aft form ’[P}’
represents evidence attained. 2 Evidence pending refers to facts that may
appear later on the branch of a Skolem machine computation, and evidence
attained refers to facts that now appear on the branch.

The templates in the following table are used to guide the translation
of subformulas in a recursive-descent fashion. One more detail of notation
is required: In a fore form like ’∼{∼P]’, the formula context is ∼P parsed
in a subcontext which itself is negative (inherited from surrounding con-
text). The reason that the fore-and-aft templates in the table are also called
Heyting templates is explained in section 4.

Fore-and-Aft Heyting Templates

literal p

fore

+

p => ’{p]’.

~

~p => ’~{p]’.

~~

p => ’~~{p]’.

aft

+

’[p}’ => p.

~

’~[p}’ => ~p.

~p, p => false.

~~

’~~[p}’ => ~~p.

~p, ~~p => false.

negation ~f

fore

+

2A previous LATEXnotation used
←−
P and

−→
P , respectively. The notation here is closer to

that actually used by the translator and better represents negation subcontexts.
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’~{f]’ => ’{~f]’.

~

’~~{f]’ => ’~{~f]’.

~~

’~{f]’ => ’~~{~f]’.

aft

+

’[~f}’ => ’~[f}’.

~

’~[~f}’ => ’~~[f}’.

~~

’~~[~f}’ => ’~[f}’.

conjunction f1&f2

fore

+

’{f1]’, ’{f2]’ => ’{f1&f2]’.

~

’~{f1]’ => ’~{f1&f2]’.

’~{f2]’ => ’~{f1&f2]’.

’~[f1&f2}’ => => ’~{f1&f2]’.

~~

’{f1]’, ’{f2]’ => ’~~{f1&f2]’.

’~~{f1]’, ’~~{f2]’ => ’~~{f1&f2]’.

aft

+

’[f1&f2}’ => ’[f1}’, ’[f2}’.

~

’{f1]’, ’{f2]’, ’~[f1&f2}’ => false.

~~

’~~[f1&f2}’ => ’~~[f1}’’, ~~[f2}’.

disjunction f1|f2

fore

+

’{f1]’ => ’{f1|f2]’.

’{f2]’ => ’{f1|f2]’.

~

’~{f1]’, ’~{f2]’ => ’~{f1|f2]’.

~~
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’~~{f1]’ => ’~~{f1|f2]’.

’~~{f2]’ => ’~~{f1|f2]’.

’~~[f1|f2}’ => ’~~{f1|f2]’.

aft

+

’[f1|f2}’ => ’[f1} | [f2}’.

~

’~[f1|f2}’ => ’~{f1]’, ’~{f2]’.

~~

’~{f1]’, ’~{f2]’, ’~~[f1|f2}’ => false.

implication f1=>f2

fore

+

’~{f1]’ => ’{f1=>f2]’.

’{f2]’ => ’{f1=>f2]’.

’[f1=>f2}’ => ’{f1=>f2]’.

~

’{f1]’, ’~{f2]’ => ’~{f1=>f2]’.

’~[f1=>f2}’ => ’~{f1=>f2]’.

~~

’~~[f1=>f2}’ => ’~~{f1=>f2]’.

’[f1=>f2}’ => ’~~{f1=>f2]’.

’{f1=>f2]’ => ’~~{f1=>f2]’.

’~{f1]’ => ’{f1=>f2]’.

’{f2]’ => ’{f1=>f2]’.

’~~{f2]’ => ’~~{f1=>f2]’.

aft

+

’[f1=>f2}’, ’{f1]’ => ’[f2}’.

~

’~[f1=>f2}’ =>’~~[f1}’, ’~[f2}’.

’{f1=>f2]’, ’~[f1=>f2}’ => false.

’~{f1]’ => ’{f1=>f2]’.

’{f2]’ => ’{f1=>f2]’.

~~

’~{f1=>f2]’, ’~~[f1=>f2}’ => false.

’{f1]’, ’~{f2]’ => ’~{f1=>f2]’.
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The groups of templates (arranged by propositional connective) closely
resemble the parse-tree walker code (Prop2CL.java) used to implement the
translator: there are fore and aft cases, and cases for whether the context
is positive, negative or double-negative. A convenient way to refer to a
transform is by case. For example IA-3 would refer to the 3rd template of
the - category for aft transforms for implication.

The templates are written in the form employed by the translator proto-
type. However, another notation that may be more pleasing is an over-arrow
representation. For example, the IA+ template could be written as follows
(from 2009 draft paper [10]):

−−−−−→
f1⇒ f2,

←−
f1⇒ −→f2 (1)

This notation is easier to write by-hand, looks tidier in print, but is not
literally appropriate as output for the translator.

−→
A is ’[A}’ and

←−
A is

’{A]’. Using this over-arrow style we list the following classical-negation,
or non-Heyting transforms. These transforms are NOT employed by the
translator.

Classical − negation logic transforms :

−−→¬¬φ⇒ φ

−−−−−−→¬(φ ∧ ψ)⇒ −→¬φ ∨ −→¬ψ
−−−−→
φ⇒ ψ ⇒ −→¬φ ∨ −→ψ
−−−−−−→¬(φ⇒ ψ)⇒ −→φ ∧ −→¬ψ

Here, φ and ψ are propositional subformulas. Using classical-negation trans-
forms allows to use a simplified complete subset of AFT-ONLY transforms
because classical negation of subformulas is recursively reductive (as speci-
fied in [2]).

Andrew Polonsky’s thesis [9] provides a detailed description of a transla-
tor for first-order predicate logic using classical negation normal transforms.

3 Sample translations

A link to a translator prototype is posted in section 6. The following trans-
lations were automatically generated by PropTool.

Example 1. Consider the propositional theory
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p & q. % axiom

p => r | s. % axiom

q => r | t. % axiom

r | s | t? % query

The translator generates the following verbose translation.

% axiom: p&q.

true => ’[p&q}’.

’[p&q}’ => ’[p}’, ’[q}’.

’[p}’ => p.

’[q}’ => q.

% axiom: p->r|s.

true => ’[p=>r|s}’.

’[p=>r|s}’, ’{p]’ => ’[r|s}’.

p => ’{p]’.

’[r|s}’ => ’[r}’ | ’[s}’.

’[r}’ => r.

’[s}’ => s.

% axiom: q->r|t.

true => ’[q=>r|t}’.

’[q=>r|t}’, ’{q]’ => ’[r|t}’.

q => ’{q]’.

’[r|t}’ => ’[r}’ | ’[t}’.

’[r}’ => r.

’[t}’ => t.

% conjecture: r|s|t?

’{r|s|t]’ => goal.

’{r|s]’ => ’{r|s|t]’.

’{t]’ => ’{r|s|t]’.

’{r]’ => ’{r|s]’.

’{s]’ => ’{r|s]’.

r => ’{r]’.

s => ’{s]’.

t => ’{t]’.

or the following terse, folded translation.

% axiom: p&q.

true => p, q.

% axiom: p=>r|s.
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p => ’[r|s}’.

’[r|s}’ => r | s.

% axiom: q=>r|t.

q => ’[r|t}’.

’[r|t}’ => r | t.

% conjecture: r|s|t?

r => goal.

s => goal.

t => goal.

Example 2. Consider the propositional theory

~(a | ~b). % axiom

~(a | ~b)? % query

The translator generates the following verbose translation. This example
illustrates the interconnection between fore and aft forms when the aft re-
duction of negation reduces all the way to literals.

% consistency

~a, a => false.

~b, ~~b => false.

% axiom: ~(a|~b).

true => ’[~(a|~b)}’.

’[~(a|~b)}’ => ’~[(a|~b)}’.

’~[(a|~b)}’ => ’~[a|~b}’.

’~[a|~b}’ => ’~[a}’, ’~[~b}’.

’~[a}’ => ~a.

’~[~b}’ => ’~~[b}’.

’~~[b}’ => ~~b.

% conjecture: ~(a|~b)?

’{~(a|~b)]’ => goal.

’~{(a|~b)]’ => ’{~(a|~b)]’.

’~{a|~b]’ => ’~{(a|~b)]’.

’~{a]’, ’~{~b]’ => ’~{a|~b]’.

~a => ’~{a]’.

’~~{b]’ => ’~{~b]’.

~~b => ’~~{b]’.

b => ~~b.

and the terse version is
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% consistency

~a, a => false.

% axiom: ~(a|~b).

true => ~a, ~~b.

% conjecture: ~(a|~b)?

~a, ~~b => goal.

Example 3. Consider the propositional problem

p & q.

p => b & a | r.

q => ~(a & b).

r?

The translator generates the following terse translation. (Do the verbose
translation and folding by hand as an exercise.) This example illustrates
the interconnection between fore and aft forms when the aft reduction of
negation does NOT reduce all the way to literals: A consistency rule is
introduced, a reversal rule is introduced for negation, and the corresponding
fore reduction of negation does reduce all the way to literals. Irreducible aft
negations need to be exposed to a consistency check!

% consistency

~b, b => false.

~a, a => false.

% ’{a&b]’, ’~[a&b}’ => false.

a, b,’~[a&b}’ => false.

% axiom: p&q.

true => p, q.

% axiom: p=>b&a|r.

p => b, a | r.

% axiom: q=>~(a&b).

q => ’~[a&b}’.

% reversal

’~[a&b}’ => ’~{a&b]’.

~a => ’~{a&b]’.

~b => ’~{a&b]’.

% conjecture: r?

r => goal.

The Skolem Machine proof in Figure 1 was automatically generated for the
terse colog theory. For this problem, the proof depends on the consistency
check, but does does not require the aft-to-fore reversal.
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Example 4. Consider the propositional problem

~(a & b).

~(a & b)?

Translate the problem and show that a proof for this problem requires the
aft-to-fore reversal but not the consistency check. Also show that a similar
observation applies to the tautology problem ∼(a & b) => ∼(a & b).?

true0

p1

q2

b3

a4

′∼[a&b}′5

false6

r7

′∼[a&b}′8

goal9

�
��
H
HH

Figure 1: Example 3 Proof

There is some irony that a perfect folding algotithm might simply pro-
duce a rule like true => goal . However, this would remove all the har-
mony of the fore-and-aft translation process.

4 Intuitionistic soundness of fore-and-aft transla-
tion

It can be shown that each template follows a pattern for some corresponding
intuitionistically valid Heyting algebra formula [11]. The aft template ‘[P

=> Q}’, ‘{P]’ => ‘[Q}’ is a good example, and the valid Heyting algebra
formula could be written (P ⇒ Q) ∧ P ⇒ Q. That is, given that (P ⇒ Q)
is an axiom (presumed evidence) and then that P becomes evident, one can
conclude Q.

Each template can be intuitively interpreted as a generalized statement
about evidence that appears on a branch of an active Skolem Machine and
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how new evidence should be asserted to the branch. This approach gives
a kind of dynamical machine operational semantics based on the colog-tree
theory of evidence presented in [7]. However, this interesting aspect can
be summarized by saying that the templates correspond to intuitionistically
valid Heyting algebra formulas.

Exercise A. Compare the operational semantics using translation instances
of the Heyting templates on a branch of a Skolem Machine to natural de-
duction and the sequent calculus. See, e.g., [8], section 1.3.

Exercise B. Use Coq [3] to prove that the Heyting transforms are intu-
itionistically valid. Also, formulate the Heyting transforms as queries for
algebraic logic theories and then use Prover9 [4] to prove that the trans-
forms are intuitionistically valid.

Any propositional axiom is asserted as a fact to a branch and any such
fact can be transformed using valid intuitionistic formulas (the results of
using the templates) to give new facts. Thus the colog theory resulting from
the translation of all of the axioms is a constructive logical consequence
of the propositional axioms. Similarly, the translations of queries and hy-
potheticals are constructive consequents of the corresponding propositions.
That is, if Q were a consequence axioms {Ai} then Q => goal would be also
a satisfiable coherent rule, and similarly for a hypothetical (but see proviso
given below).

Perhaps the easy way to check the intuitionistic validity of a Heyting
algebra formulas corresponding to templates is to use the Heyting algebra of
open subsets of the real line. So, for example, the formula (P → Q)∧P → Q
would correspond to int(P c ∪ Q) ∩ P ⊆ Q, and the latter formula can be
proved using open-set arguments for the real line with familiar topology.

Soundness does require a restriction on the use of hypotheticals, P → Q.?
A simple example of this would be the following little problem:

p => q.?

q => p.?

The translated theory would be :

true => p,

q => goal.

true => q.

p => goal.
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Notice that the hypothetical assumption of each provides evidence for the
conclusion of the other hypothetical, thus allowing unsound proofs. Thus,
we should only allow one hypothetical in a given propositional problem,
or check that two or more hypotheticals do not mix assertions with goals,
something which is not automated in the translator. (That issue is decidable,
but it is very awkward to impose this condition on a language translator.)

5 Completeness issues

What one might desire for completeness of Heyting transform translation
is that, if a propositional problem has any constructive proof decision us-
ing established methods, then there is a suitably constructed fore-and-aft
translation of the problem to colog that has a Skolem Machine proof. 3

The efforts described in this report is a work-in-progress which falls short
of general completeness. However, various short positions appear to be
interesting.

The qualification required regarding hypotheticals given in the previous
section is related to a somewhat stickier problem related to completeness of
the translator. For, example p∧q ⇒ p is valid but the translator translates p
& q => p? too conservatively, whereas a hypothetical p & q => p.? does
suffice, or, one can reformulate as an axiom and a query p & q. p?. An-
other good example of this is the intuitionistic tautology ∼a|∼b => ∼(a &

b).?

A similar ackwardness involves interchangeability of ¬P and P ⇒ false,
especially in a goal. For example, one might hope that query b => ∼a should
follow from axiom a,b -> false or the axiom ∼(a & b) in direct fashion.
However, at this writing, this problem cannot be directly formulated in that
manner. It is often possible to give a simple alternate problem formulation
that might suffice.

There is a more serious shortcoming with regard to the nonreductive
aft transformations such as CA-. (Such transforms are not completely re-
cursively reductive via the connective – they lack the classical harmony).
So, for example, the problem ∼(a & a). ∼a? will not automatically prove
because there is no way to effectively express that a&a=a (in the present
translator approach). Or, more generally there is currently not effective
way to express that if P=Q then ∼P=∼Q where P and Q are propositional
variables.

Here are some questions that might lead to good projects . . .

3For an excellent historical survey of known decision procedures, see Dychoff [6].

13



1 What is the scope or limitation of what can be proved using the current
templates, including problem formulation tactics? Is the current trans-
lation approach effectively complete for formulas only having negation
in front of literals (and not subformulas)?

2 Is it possible to write effective scripts/tactics for problems, whereby a
script describes both the logic problem and a suggested approach to
search for a proof of the problem?

Perhaps it is cogent to mention that fore-and-aft translation does not
produce an extension of the input propositional theory, strictly speaking.
What is produced here is more like a compilation/translation of the in-
put to machine code. As such, the approach here might be considered as
an experiment in applied proof semantics. Reference [5] focuses on coherent
conservative extension of FOL, but extension concepts and replacement con-
cepts seem very much intertwined, pending more study, and [5] effectively
discusses this aspect also.

6 Download PropTool and sources

A demonstration translator is available as a self-starting jar file:
http://SkolemMachines.org/reports/prop2cl/PropTool.jar

The Java Sources are included in the jar. One might need to allow the jar to
execute – open with Jar Launcher. The jar-cautious reader can extract the
jar first to check that it is benign. Ocassionally, a newer version of PropTool
may translate a problem a little differently than characterized in Section 3
above. Also, terse translations are not always as terse as might be possible.
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