
Coherent Logic via colog
colog primer

John Fisher
jrfisher@cpp.edu

2009− 2014

This colog primer describes how to express coherent first-order logic
formulas using colog code. Colog code is the machine code for a Skolem
Machine [3].

1 Coherent logic theories

2 Translation to colog

3 Negation

4 Equality

5 Succinct colog syntax

6 Coherent approximations

1 Coherent logic theories

A coherent logic well-formed formula has a general form which can be ex-
pressed as follows.

∀x̂(a1 ∧ . . . ∧ am → ∃ŷ1(b11 ∧ . . . ∧ b1k1) ∨ . . . ∨ ∃ŷn(bin1 ∧ . . . ∧ binkin)) (1)

where m,n >= 0, each ai and bjk are atomic propositions, and any or
all of the quantifiers may be vacant. If present, the universal variables
x̂ = {x1, . . . , xs} have scope which is the entire formula, but the existential
variables in any ŷj , if present, only have scope restricted to the particular
disjunct. It is assumed that the formula is closed and that none of the
universal variable appear among any of the existential variables.

1

When m = 0, formula (1) is conventionally written as

∀x̂(> → ∃ŷ1(b11 ∧ . . . ∧ b1k1) ∨ . . . ∨ ∃ŷn(bin1 ∧ . . . ∧ binkin)) (2)

or also

∀x̂(∃ŷ1(b11 ∧ . . . ∧ b1k1) ∨ . . . ∨ ∃ŷn(bin1 ∧ . . . ∧ binkin)) (3)

On the other hand, if n = 0 then formula (1) is conventionally written
as

∀x̂(a1 ∧ . . . ∧ am → ⊥) (4)

A coherent logic theory is a finite sequence of coherent logic formulas,
each one designated as either an axiom or as a conjecture.

Coherent logic is super constructive: Nothing can be concluded that has
not been imposed by the axioms or conjectures of the coherent theory and
whose computation cannot be justified by a terminating calculation of a
Skolem Machine [3].

2 Translation to colog

This section offers several coherent logic theories and translations to colog
code form. In the coherent logic theories an axiom is given terminated with
period at the end, and a conjecture (query) with a question mark ? at the
end.

Our intention in this section is to give examples covering the various
formulas as axiom or query. The reader is advised to carefully check that
each of the coherent logic formulas given as examples in this section matches
one of the forms (1),(2),(3), or (4) from the first section, and how.

The proof tree figures were automatically generated by the colog GUI
prover available at the website [1].

Example 1. This simple example illustrates how constants are captured
into the colog domain ...

p(a).

∀x q(x).

∃x q(x)?

using a special predicate dom. The colog code . . .

2

true => p(a), dom(a).

dom(X) => q(X).

q(X) => goal.

The colog deduction tree in Fig.1 shows how dom works to carry a con-
stant (the a which appears in the first axiom) into a universal assertion (the
second axiom).

true0

p(a)1

dom(a)2

q(a)3

goal4

Figure 1: Example 1 tree

Example 2. This example illustrates how an existential quantifier can inject
a new domain element.

p(a).

∀x(p(x)→ ∃y q(x, y)).

∀z r(z).

∃z(q(a, z) ∧ r(z))?

colog code:

true => p(a), dom(a).

p(X) => dom(Y), q(X,Y). % N.B.

dom(Z) => r(Z).

q(a,Z), r(Z) => goal.

3

true0

p(a)1

dom(a)2

r(a)3

dom(sk2)4

q(a, sk2)5

r(sk2)6

goal7

Figure 2: Example 2 tree

The thing to notice is how the dom(Y) in the second rule gives evidence
for the existential variable and how the resulting constant can then be used
to match the existential variable Z in the third colog rule.

The colog programmer can use any quantification predicate, but dom

is recommended: The idea is that dom(X) in the antecedent represents a
universal quantification (already belongs to domain) and dom(X) in the con-
sequent represents existential quantification (will be added to domain).

Example 3. Existential variables may have common names, but still have
limited scope – limited to adjacent conjunct.

∃y p(y) ∨ ∃y q(y).

∀z(p(z)→ r(z)).

∀z(q(z)→ s(z)).

∃w s(w) ∨ ∃w r(w)?

. . . colog code:

true => p(Y) | q(Y).

p(Z) => r(Z).

4

q(Z) => s(Z).

s(W) => goal. r(W) => goal. % two goals

true0

p(sk3)1

r(sk3)2

goal3

q(sk4)4

s(sk4)5

goal6

"
""

Q
QQ

Figure 3: Example 3 tree

Notice that different Skolem constants are generate in the branches.

Example 4. Here is a simple example showing how to formulate a con-
jecture having coherent form (1) with both antecedent and consequent.

∀x (p(x)→ q(x) ∨ r(x)).

∀x(q(x)→ ∃u s(u)).

∀x(r(x)→ ∃v s(v)).

∀x (p(x)→ ∃w s(w))? % implication query

The colog translation uses assumption of antecedent to effect the query:

p(X) => q(X) | r(X).

q(X) => r(U).

r(X) => s(V).

true => p(@X). % assumption of antecedent

s(W) => goal.

The hypothetical variable @X is actually a colog constant, meaning ”suppose
@X is an arbitrary general value such that p(@X)”. The colog programmer
can choose their own unique names for hypothetical variables; there is no
obligation to use the @ notation. Notice that the use of the hypothetical
variable imposes a nonempty domain for the problem.

5

true0

p(@X)1

q(@X)2

r(sk5)3

s(sk6)4

goal5

r(@X)6

s(sk7)7

goal8

�
��

Q
QQ

Figure 4: Example 4 tree

Fig. 4 illustrates a colog deduction tree for this problem.
The reader should construct a small example that shows that one needs

unique names for different hypothetical variables.
Additional examples of translations from logical coherent formulas to

colog are given below, for negation and equality.

3 Negation

Falsity axioms form (4) can disprove queries.

Example 5.

p→ q ∨ r.

q → false.

r → false.

p→ false ?

colog code:

p => q | r.

q => false.

r => false.

true => p. % assumption of antecedent

6

false => goal.

Notice that the proof tree cannot actually use the last colog rule. The proof
tree directly deduces that p must be false.

true0

p1

q2

false3

r4

false5

�
��
Z
ZZ

Figure 5: Example 5 tree

Example 6. Here is a rework of Example 5, this time using contraries of
the predicates.

p→ q ∨ r.

¬q.

¬r.

p→ false ?

(¬p→ goal ? % alternately)

colog code:

p => q | r.

true => ∼q.

true => ∼r.

q, ∼q => false. % consistency axiom

r, ∼r => false. % consistency axiom

true => p. % assumption of antecedent

false => goal. % superfluous again

7

We add consistency axioms for the negations. colog allows the use of tilde
∼ for contraries, but the tilde is part of the predicate name and not an
operator. (By way of contrast, minus - is a unary term operator, and would
not usually be used for predicates.) No meaning is attached to ∼p, but the
programmer can write axioms to assert intended logical relationships. For
example, we would have to explicitly use an axiom like

¬¬p→ p. (5)

to say that double negation collapses (for p).

true0

q1

r2

p3

q4

false5

r6

false7

�
��
Z
ZZ

Figure 6: Example 6 tree

4 Equality

The colog programmer can use ’=’ for equality: the colog reader will parse
’=’ as an infix binary predicate. (If one uses ’eq’ say for equality, that
will have to be a prefix predicate.) The programmer needs to provide the
relevant axioms for equality. (It is possible to automate the generation of
equality axioms for colog theories.)

Example 7. Using = as equality, translate the following problem to colog.

p(a, b).

f(c) = a.

c = d.

8

f(f(c)) = b.

p(f(d), f(f(c))) ?

colog code:

true => p(a,b), f(c)=a, c=d, f(f(c))=b. % rule 1

true => dom(a), dom(b), dom(c), dom(d). % rule 2

p(f(d),f(f(c))) => goal. % rule 3

% equality axioms

dom(X) => X=X. % rule 4

X=Y => Y=X. % rule 5

X=Y, Y=Z => X=Z. % rule 6

% function substitutivity

X=Y => f(X)=f(Y). % rule 7

% predicate substitutivity

X=Y, U=V, p(X,U) => p(Y,V). % rule 8

The proof tree is linear having 36 nodes. Here is the proof extracted from
the deduction (automatically, by a colog prover).

LEAF 36.

@35, rule3: p(f(d),f(f(c))) => goal

@34, rule8: f(c)=f(d), b=f(f(c)), p(f(c),b) => p(f(d),f(f(c)))

@29, rule7: c=d => f(c)=f(d)

@18, rule8: a=f(c), b=b, p(a,b) => p(f(c),b)

@14, rule5: f(f(c))=b => b=f(f(c))

@12, rule5: f(c)=a => a=f(c)

@8, rule1: true => p(a,b), f(c)=a, c=d, f(f(c))=b

@5, rule4: dom(b) => b=b

@0, rule2: true => dom(a), dom(b), dom(c), dom(d)

The extracted proof reads from bottom of the proof tree to its top or root.
The reader should load the colog code and inspect the tree. (Notice that
rule 7, being complex, is a queued colog rule.) The reader should run the
colog prover on the colog code for Example 7 and inspect the proof tree.

9

This example was constructed so as illustrate the need to supply both
the equality axioms (reflexivity, symmetry, transitivity) and to enable sub-
stitution of equals for both terms and predicates. Example 13 below shows
a substitution axiom for the case of a binary infix operation in the theory.

The colog programmer would not be obligued to use ’=’ as the equality
predicate so long as the appropriate equality axioms and substitutivity ax-
ioms are supplied. However, Example 8 is interesting in this regard: note
that only reflexivity of ’=’ is explicitly given as an axiom.

. . .

Example 8. If ’eq’ is a reflexive relation which substitutes for equality ’=’
then ’eq’ is equality.

∀x eq(x, x). eq is reflexive

∀x∀y∀u∀v(eq(x, u)∧eq(y, v)∧x = y → u = v). % eq substitutesfor =

∀x x = x. % = is reflexive

∀x∀y(eq(x, y)→ x = y) ?

colog code:

dom(X) => eq(X,X).

eq(X,U), eq(Y,V), X=Y => U=V.

dom(X) => X=X.

true => eq(@X,@Y), dom(@X), dom(@Y).

@X=@Y => goal.

See Fig.7 for the deduction tree. Here is the extracted proof followed by the
deduction tree . . .

LEAF 10.

@9, rule5: @X=@Y => goal

@8, rule2: eq(@X,@X), eq(@X,@Y), @X=@X => @X=@Y

@5, rule3: dom(@X) => @X=@X

@3, rule1: dom(@X) => eq(@X,@X)

@0, rule4: true => eq(@X,@Y), dom(@X), dom(@Y)

The next section outlines the syntax currently allowed for our colog
language implementation.

10

true0

eq(@X,@Y)1

dom(@X)2

dom(@Y)3

eq(@X,@X)4

eq(@Y,@Y)5

@X = @X6

@Y = @Y7

@Y = @X8

@X = @Y9

goal10

Figure 7: Example 8 tree

5 Succinct colog syntax

A colog function name begins with lowercase alphabetic followed by alpha-
betic, numeric, and underscore (’ ’) in any mixture. A colog predicate name
has the same definition except that the name may be preceded by arbitrarily
many keyboard tildes (∼), explained below.

5.1 symbolic term syntax

• X variable starts with Uppercase alpha

• c constant starts with lowercase alpha
@V, V a variable is a special constant, universal witness (examples 4,
8)

• f(t1,t2,...) function name starts with lowercase alpha,

11

t1, t2, ... are terms

• (t1 β t2), parens required, binary infix operator symbols β:

* # + / \ - ^ & | ; -> =>

• µt unary prefix operator symbols µ:

- ? !

• fixed or float numbers, e.g., 233 ’21.789’

The binary infix ’-’ requires a space to follow, and the unary prefix ’-’ requires
no space, e.g., as in a colog code axiom expressed like this . . .

dom(X) => (X - -Y) = (X + Y).

Numbers are symbolic at present, no evaluation. Alternately, a function or
constant name can be ’quoted’ or "quoted", any symbols within quotes.

5.2 symbolic predicates

• p predicate name p starts with lowercase alpha

• p(t1, t2, ...) p starts with lowercase alpha (or quoted, as for func-
tions)
t1, t2, ... are terms

• t1 ι t2 no parens, infix predicate symbol ι:

= != < <= > >=

A predicate name can begin with a keyboard tilde character ∼, which is read
as part of the predicate name, and not as a prefix operator. The preferred
method to represent contraries in colog is to use the tilde and then include
axioms regarding the intended logic. See Example 6 in Section 3. This
pseudo negation is inherently intuitionistic, unless the colog programmer
adds axioms for special consideration, e.g.,

p(X), ∼p(X) => false. % universal consistency rule

∼p(X), ∼∼p(X) => false. % a consistency rule for non-set logic

12

p(X) => ∼∼p(X). % universal property of contraries

∼∼p(X) => p(X). % set-logic axiom for predicate p

dom(X) => p(X) | ∼p(X). % set-logic axiom for predicate p

Enforcing set-logic for contraries requires axioms for each predicate in the
colog theory. Such axioms must be included manually by the colog program-
mer (or by some code wizard . . .).

5.3 colog conjunction, disjunction

conjunction
a1, a2, ... finite sequence of atoms

disjunction
c1 | c2 | ... finite sequence of conjunctions

5.4 colog rule forms

true => δ. consequent δ is a colog disjunction

α => δ. antecedent α is a colog conjunction, δ a colog
disjunction

α => goal. α is a colog conjunction

α => false. α is a colog conjunction

And finally, a colog theory is a finite sequence of colog rules.
At present the colog reader ignores comments in the code. Comments

are single lines started with % or //. Multi-line comments have form /*
. . . */.

6 Coherent approximations

The methods for translating coherent logic into colog exemplified in Section
2 can all be automated quite easily.

There are often ways to specify a colog problem as a translation of a
first-order logic problem even when the source theory itself is not explicitly
coherent. This section explores some possibilities. Check back here later for
additional examples.

13

• 6.1 included middle

• 6.2 Coq via colog

• 6.3 Abstract algebra via colog

• 6.4 Function extensionality

• 6.5 Russell’s paradox redux

6.1 included middle

Example 9. How might we express a denial of excluded middle in colog?
Specifically, suppose that p/1 is not a set predicate, and then prove that it
is not.

∀x (p(x) ∨ ¬p(x))→ ⊥.

∀x (p(x) ∨ ¬p(x))→ ⊥?

The idea is to give a colog formulation of the FOL problem and to prove it
with a Skolem Machine. There is minimal logical content to this problem
since it asks to prove what is supposed as an axiom.
. . . possible colog code:

true => dom(@X), p middle(@X). % a ‘middle’ instance for the

axiom

p middle(@X), p(@X) => false. % outside p

p middle(@X), ∼p(@X) => false. % outside ∼p

dom(X) => p(X) | ∼p(X). % supposition for query, show false

false => goal. % unusable

Fig.9 shows a colog proof tree for our colog problem formulation.
Our coherent representation uses a trick suggested by Heyting algebras:
Represent propositions by open sets on the real line and use interior-of-
complement as the logical negation of a proposition. If we can deny the mid-
dle of a proposition then there is an instance of that middle, p middle(@X).
Notice that the colog constant @X is introduced in an axiom as an existential
instance! (Reminder: One can use any new symbol instead of our @X colog
notation.)

14

true0

dom(@X)1

p middle(@X)

p(@X)3

false4

∼p(@X)5

false6

,
,
b
bb

Figure 8: Example 9 tree

6.2 Coq via colog

The intention of the examples in this subsection is to represent a few Coq[2]
problems closely as colog problems, by way of example.

Example 10. Consider the following Coq problem script :

Module Example10.

Inductive bool : Type :=

| true : bool

| false : bool.

Definition andb (b1:bool) (b2:bool) : bool :=

match b1 with

| true => b2

| false => false

end.

Definition orb (b1:bool) (b2:bool) : bool :=

match b1 with

| true => true

| false => b2

end.

Lemma lem1 : andb true false = false.

Proof. reflexivity. Qed.

Lemma lem2 : andb false true = false.

Proof. reflexivity. Qed.

Theorem andb_eq_orb :

forall (x y : bool),

(andb x y = orb x y) -> x = y.

15

Proof.

intros x y H.

destruct x. destruct y.

reflexivity.

rewrite <- lem1. rewrite H. reflexivity.

destruct y.

rewrite <- lem2. rewrite H. reflexivity.

reflexivity.

Qed.

via colog . . .

\% Frame the Theorem for a colog proof

true => bool(@X), bool(@Y),

andb(@X,@Y) = orb(@X,@Y).

@X=@Y => goal.

\% Inductive: destruct a bool

bool(Z) => Z=true | Z=false.

\% consistency

andb(A,B)=true, orb(A,B)=false => false.

andb(A,B)=false, orb(A,B)=true => false.

\% Definition andb

bool(Y) => andb(true,Y)=Y.

bool(Y) => andb(false,Y)=false.

\% Definition orb

bool(Y) => orb(true,Y)=true.

bool(Y) => orb(false,Y)=Y.

\% equality

bool(B) => B=B.

A=B => B=A.

A=B, B=C => A=C.

\% substitution of =

A=B,C=D => orb(A,C)=orb(B,D).

A=B,C=D => andb(A,C)=andb(B,D).

It is instructive to compare the resulting colog proof with the Coq proof.
This is left as an exercise for the reader. A Coq proof often requires a careful
choice of tactics, even though multiple helpful tactics might apply. Colog is
considerably more nondeterministic: Any successfully saturated colog tree
suffices for proving.

16

The colog theory here illustrates how reflexivity is force for all things
within the scope of theory (bool). More generally, we might have more than
one type in the theory. For example, if we had had bool and nat within the
same theory we could have expressed reflexivity for = like this

\% nat type needs equality

nat(Z) => dom(Z).

\% bool type needs equality

bool(Z) => dom(Z).

\% and one reflexivity axiom

dom(Z) => Z=Z.

Example 11. Consider the following Coq problem involving proof by in-
duction:

Module Example11.

Inductive nat : Type :=

| O : nat

| S : nat -> nat.

Fixpoint plus (n : nat) (m : nat) : nat :=

match n with

| O => m

| S n’ => S (plus n’ m)

end.

Theorem plus_0_r : forall n:nat, plus n O = n.

Proof.

intros n. induction n as [| n’].

(* Case n = 0 *) reflexivity.

(* Case n = S n’ *)

simpl. rewrite -> IHn’. reflexivity.

Qed.

We want a simple colog formulation for proving the theorem by induction.

\% Theorem

true => nat(@N), plus(@N,0)=@N. % induction assumption

plus(0,0)=0 => basegoal.

basegoal, plus(s(@N),0)=s(@N) => goal. % to prove

\% nat type

true => nat(0). % use 0 symbol

nat(N) => nat(s(N)).

17

nat(N) => dom(N).

\% Definition plus

nat(X), nat(Y) => nat(plus(X,Y)).

nat(Y) => plus(0,Y)=Y.

nat(X), nat(Y) => plus(s(X),Y)=s(plus(X,Y)).

\% equality

dom(Z) => Z=Z.

X=Y => Y=X.

X=Y, Y=Z => X=Z.

\% substitution

A=B, C=D => plus(A,C)=plus(B,D).

A=B => s(A)=s(B).

The reader should work both the Coq problem and the colog problem and
compare the results. See the extracted colog proof to compare with the Coq
proof.

Example 12. Here is a simple Coq problem involving polymorphic lists:

Inductive list (X:Type) : Type :=

| nil : list X

| cons : X -> list X -> list X.

Fixpoint length (X:Type) (l:list X) : nat :=

match l with

| nil => 0

| cons h t => S (length X t)

end.

Check (cons nat 1 (cons nat 2 (nil nat))).

(* =>

cons nat 1 (cons nat 2 (nil nat))

: list nat

*)

The following colog approximation expresses the polymorphism using type
predicates:

% Check this construction

type(Type, cons(1,cons(2,nil))) => goal.

% polymorphic list

type(T) => type(list(T),nil).

type(T), type(T,X), type(list(T),L) => type(list(T),cons(X,L)).

18

type(T), type(T,X) => dom(X). \% type(dom,X)

% data

true => type(nat),

type(nat,1),

type(nat,2),

type(nat,3).

Running the colog problem shows that the colog proof binds Type in the
colog goal rule to list(nat) (@13). We formulated the colog problem to
emulate the Check problem for Coq.

> java -jar colog13B.jar file=x12.co log=true

colog: file=x12.co, d=300, w=1000, c=-1, PROOF,

#inferences=11, #facts=14, #branches=1, time=0ms

LEAF 14.

@13, rule1: type(list(nat),cons(1,cons(2,nil))) => goal

@12, rule3: type(nat), type(nat,1), type(list(nat),cons(2,nil))

=> type(list(nat),cons(1,cons(2,nil)))

@9, rule3: type(nat), type(nat,2), type(list(nat),nil) =>

type(list(nat),cons(2,nil))

@7, rule2: type(nat) => type(list(nat),nil)

@0, rule5: true =>

type(nat), type(nat,1), type(nat,2), type(nat,3)

The reader is encouraged to formulate more examples of Coq problems
with colog approximations. Coq provides excellent motivation for coherent
logic formulations, and possibly there are coherent Coq tactics that could
be designed. The examples 10, 11 and 12 suggest that coherent logic might
concern itself with datatypes in a systematic manner.

6.3 Abstract algebra via colog

Algebra problems are excellent test cases for problem formulation and for
studying effective search heuristics for provers. The primary obstacle is the
management of term complexity. (This example illustrates colog’s * sym-
bolic operator used as the operation for our monoid.)

Example 13. Here is the problem: Show that left and right inverses in
a monoid are equal.

19

% data

true => dom(e),

dom(x), dom(y), dom(z), % hypothesis

(y*x)=e, % left inverse for x

(x*z)=e. % right inverse for x

% conjecture

y=z => goal.

% closure for *

dom(X), dom(Y) => dom((X*Y)).

% associativity of *

dom(X), dom(Y), dom(Z) => ((X*Y)*Z)=(X*(Y*Z)).

% e is for *

dom(X) => (X*e)=X, (e*X)=X.

% = axioms

dom(X) => X=X.

X=Y => Y=X.

X=Y, Y=Z => X=Z.

% substitutivity for =

A=B, C=D => (A*C)=(B*D).

The primary colog search heuristic is complexity, which is illustrated with
the following command-line execution of colog on this input theory (x13.co).

> java -jar colog13B.jar file=x13.co depth=6500 width=1

complexity=2 log=true

colog: file=x13.co, d=6500, w=1, c=2, PROOF, #inferences=1384,

#facts=1407, #branches=1, time=434ms

LEAF 1407.

@1406, rule1: y=z => goal

@1405, rule7: z=y => y=z

@1404, rule8: z=((y*x)*z), ((y*x)*z)=y => z=y

@1341, rule7: y=((y*x)*z) => ((y*x)*z)=y

@1340, rule8: y=(y*(x*z)), (y*(x*z))=((y*x)*z) => y=((y*x)*z)

@1319, rule7: ((y*x)*z)=(y*(x*z)) => (y*(x*z))=((y*x)*z)

@1318, rule4: dom(y), dom(x), dom(z) => ((y*x)*z)=(y*(x*z))

@650, rule8: y=(y*e), (y*e)=(y*(x*z)) => y=(y*(x*z))

@649, rule7: (y*(x*z))=(y*e) => (y*e)=(y*(x*z))

@648, rule9: y=y, (x*z)=e => (y*(x*z))=(y*e)

20

@93, rule8: z=(e*z), (e*z)=((y*x)*z) => z=((y*x)*z)

@92, rule7: ((y*x)*z)=(e*z) => (e*z)=((y*x)*z)

@91, rule9: (y*x)=e, z=z => ((y*x)*z)=(e*z)

@87, rule7: (e*z)=z => z=(e*z)

@84, rule5: dom(z) => (z*e)=z, (e*z)=z

@66, rule7: (y*e)=y => y=(y*e)

@64, rule5: dom(y) => (y*e)=y, (e*y)=y

@9, rule6: dom(z) => z=z

@8, rule6: dom(y) => y=y

@0, rule2: true => dom(e), dom(x), dom(y), dom(z), (y*x)=e, (x*z)=e

Without the complexity switch (or cut on the GUI toolbar) the search would
include many other facts (unnecessary for proof). The reader can load the
theory into the GUI and run the proof search. Which rules are not used?
Try using complexity=3, 4, . . .

The general problem of managing operator/function complexity remains
an issue of primary concern for colog design.

6.4 Function extensionality

Example 14. The colog functions f and g have equal definitions, assuming
commutivity for +.

f=g => goal.

nat(X) => f(X)=(X+1).

nat(X) => g(X)=(1+X).

nat(X), nat(Y) => (X+Y)=(Y+X).

true => nat (1).

f(@Nat)=g(@Nat) => f=g. % if arbitrarily = for values then =

true => nat(@Nat).

nat(Z) => dom(Z).

% equality axioms

dom(X) => X=X.

X=Y => Y=X.

X=Y, Y=Z => X=Z.

A=B, C=D => (A+C)=(B+D). % substitutivity for +

21

The theory proves easily using a colog prover (load and run).

6.5 Russell’s paradox redux

Russell’s class of all classes that do not belong to themselves

R = {w|w /∈ w} (6)

has as a classical logic consequence the following paradoxical formula.

R ∈ R↔ R /∈ R (7)

Let us look at a colog rendition, where dom refers to the class domain for
this example
Example 15.

true => dom(r), % Russell’s class R

dom(A), ~in(A,A). % some class not belonging to self

dom(X), ~in(X,X) => in(X,r). % define R (6) coherently

dom(X), in(X,r) => ~in(X,X).

dom(X) => ~in(X,X) | in(X,X). % excluding middle for in

% comment out to compute

% intuitionistic model

~in(X,X), in(X,X) => false. % consistency re in

The coherent refutation for this theory is shown in Fig.9

22

true0

dom(r)1

dom(sk0)2

in(sk0, sk0)3

in(sk0, r)4

in(r, r)5

in(r, r)6

false7

in(r, r)8

in(r, r)9

false10

"
""

HHH

Figure 9: Example 15 refutation

However, if we delete the excluded middle rule we can compute the co-
herent tree model for the pared theory, as shown in Fig. 10.

true0

dom(r)1

dom(sk0)2

in(sk0, sk0)3

in(sk0, r)4

Figure 10: model without excluded middle rule

We can coherently prove the paradoxical equivalence (7) without the
excluded-middle rule (assume either implicand, derive other one as goal),
but we cannot produce the explicit contradiction in the intuitionistic version.

23

References

[1] SkolemMachines website: SkolemMachines.Org

[2] The Coq Proof Assistant website http://coq.inria.fr/

[3] John Fisher and Marc Bezem, Skolem Machines, Fundamenta Informat-
icae, 91 (1) 2009, pp.79-103.
A version of this paper with minor corrections is linked at the SkolemMa-
chines website: SkolemMachines.pdf.
Note that colog is referred to as geolog in this paper.

24

http://coq.inria.fr/

	Coherent logic theories
	Translation to colog
	Negation
	Equality
	Succinct colog syntax
	symbolic term syntax
	symbolic predicates
	colog conjunction, disjunction
	colog rule forms

	Coherent approximations
	included middle
	Coq via colog
	Abstract algebra via colog
	Function extensionality
	Russell's paradox redux

