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Abstract. The Skolem machine is a Turing-complete machine model
where the instructions are first-order formulas specified by a colog ma-
chine language for coherent logic. This note suggests some basic defini-
tions for categories that can be associated with Skolem Machine compu-
tations, following some F-coalgebra patterns. We attemp to outline an
intuitive category dynamics for Skolem machine computations based on
model trees and branch morphisms. The issue of an appropriate cate-
gory framework for model/proof duality is also mentions. These notes
are really a prospectus for additional study.

1 Background information

The basic concepts regarding Skolem Machines is presented in the paper
[2], and the concepts discussed in that paper form the foundation and
motivation for the ideas presented in this note. There is a direct link to a
corrected copy of that paper in the reference section. The reader of this
note should consult that original paper for the basic definitions of Colog
theories, Colog trees, Skolem machines, etc. Colog theories provide the
machine code (coherent logic) for Skolem Machines and Colog trees are
the object computed by the machine (proofs and models).

The category dynamics for coherent logic proposed here does not ex-
actly correspond to the abstract pattern(s) for F-coalgebras and dynamics
associated with state machines that are described in current literature.
See the brief notes in the Appendix A regarding the category functor pat-
terns or the examples in [1] to compare. We use the patterns as a guide
but modify various details; adequacy seems not yet achieved.

2 Model trees associated with a coherent logic theory

A colog theory C is a finite sequence of coherent logic rules [2] (Sect. 1).



Definition 1. The signature of colog theory C is Σ = ΣC = Σf∪Σp∪Ω,
consisting of functions Σf of C (including constants), predicates Σp of
C and witness symbols Ω. Functions and predicates have arity, constants
are functions of arity 0, witness symbols are constants of arity 0 and
Ω ∩Σf = ∅. It is assumed that true, false and goal all belong to Σp,
even if these reserved predicate symbols do not actually appear in C.

Many colog theories have the same signatures. The equivalence of coherent
logic theories will later be defined in terms of their signatures and on
correspondences (semantics) of their model trees.

For example, consider the following colog theory C.

true => p(f(X)), q(a).

p(A) => r(A) | s(A).

q(B) => v(B) | w(B).

r(A),v(B) => goal.

The signature of C consists of the constant a/0, the function f/1 and the
predicates p/1, q/1, r/1, v/1, and w/1.

Definition 2. A model tree over a signature is a multi-branching tree
rooted at true whose branch sets consist of grounded instances of the
predicates. The groundings can use the constants and functions of the
signature or witness (new constant) symbols from Ω.

Technically, there is supposed to be a fixed, countably infinite, set of
possible witness symbols, but in the examples here we will just pick any
convenient new symbols. For example, Fig.1 illustrates a model tree.

This model tree 1 is actually a colog (aka geolog) tree, as defined in
[2], and was built using the rules of the theory. Notice that the witness
sk1 was generated by an application of the first rule of the theory applied
to the initial model tree {true}.

Model trees do not have to be built using the systematic application
of the rules of a particular theory. For example, the model tree over the
signature of C depicted in Fig.2 was not generate by the rules of C, but
it is still a model tree for the signature of the theory C. (See Lemma 4
below.)

It is instructive to think about model trees as possible worlds that
might or might not be supported by the original coherent theory (or some
other coherent theory having the same signature). These possible worlds
must only consider the signature of the theory and possible anonymous

1 Displayed trees were automatically generated by the Colog prover [3]
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Fig. 1. Model tree T1
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Fig. 2. Model tree T2, but not colog tree for C

witnesses that could arise. The true facts in one of these worlds consists
of the set of propositions in the branch. Thus, there will generally be
abundantly many model trees that are not colog-theory generated trees.
Of course, every C tree (colog tree built using rules of C) is a model tree.

Definition 3. A model tree morphism m : Ta → Tb maps branches of Ta
to branches of Tb using a mapping w of the witnesses occurring in Ta to
the witnesses of Tb in such a way that if B is a branch of Ta then w(B) ⊆
m(B), and distinct branches of Ta are mapped to distinct branches of Tb.

Lemma 1. If ma : Ta → Tb uses witness map wa and mb : Tb → Tc
uses witness map wb then we have wa ◦wb(B) ⊆ ma ◦mb(B) and distinct
branches of Ta are morphed to distinct branches of Tc.

Lemma 1 justifies the natural definition of composition for model tree
morphisms via composition of witness maps and branch maps.

Since the branches of a model tree generated by a colog theory can
be thought of as “cases”, the requirement of Definition 3 that distinct
branches of the source tree be mapped to distinct branches of the target
tree can be viewed are a “separation of cases” requirement imposed on
morphisms. Morphisms map cases to cases, subject to renaming of wit-
nesses. (This supports a kind of topological analogy regarding how one
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tree could be “morphed” to part of another tree, and this intuition will
be supported by dynamics defined in the next section.)

Definition 4. The morphism m : Ta → Tb is invertible provided that
there is a tree morphism m′ : Tb → Ta such that the composition m◦m′ is
the identity branch map of Ta and the composition of the corresponding
witness maps w ◦ w′ maps witnesses of Ta to themselves.

Definition 5. Given two model trees Ta, Tb in MΣ we say that Ta and
Tb are similar, Ta ≈ Tb, provided there is a morphism m : Ta → Tb which
is invertible.

The relation ≈ is an equivalence relation on the objects of MΣ . Fig. 3
shows a colog tree T3 similar to the one in Fig.1. T3 results from applica-
tion of the rules of C in a different order than was the case for T3. Thus,
these trees should be similar. Careful inspections of these trees easily re-
veals that the branches of T1 correspond to branches in T3. Let Bij refer
to the jth branch of tree i, and let w be the map of witnesses sk1 ↪→ sk5.
Let m be the morphism: m(B11) = B21, m(B12) = B33, m(B13) = B32,
m(B14) = B34. Then we have the inclusions w(Bij) ⊆ m(Bij) for i =
1 . . . 2 and j = 1 . . . 3. The morphism m is invertible and we thus have
T1 ≈ T3.
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q(a)2

v(a)3

r(f(sk5))4
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s(f(sk5))6
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Fig. 3. Model tree T3

Note that there are no morphisms between T2 and either T1 or T3
because they represent different, exclusive, partial models. It can be te-
dious to explicitly enumerate morphisms for more complicated theories
or corresponding model trees, but the intuitive idea is quite simple.
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Trees T1 and T3 are both saturated by the example theory. Neither
tree can be embedded in any larger colog tree, but both could be embed-
ded in larger model trees: Consider arbitrarily expanding the signature
an extend branches, or consider a larger colog theory containing the rules
of the current theory. If we were to consider either rooted subtree con-
sisting of nodes 0,1, and 2, then either subtree could be embedded in the
corresponding saturated trees, but there would be no inverse morphism.

Lemma 2. If model tree Ta has some branches extended producing model
tree Tb then there is a natural morphism i : Ta → Tb injecting Ta into Tb.

A proof tree is a model tree each of whose branches contains either
goal or false. A trimmed proof tree is a proof tree such that each leaf
is either goal or false and there are no other occurrences of goal or
false.

Lemma 3. For every proof tree T there is a unique trimmed proof tree
T’ and a morphism T ′ → T .

Proof. Trim the branches of T to the highest occurrence of goal or
false in T to produce T ′, and consider the inclusion map of T ′ to T ut

It might be more accurate to use a term like potential or hypothetical
model tree rather than model tree since, for example, the tree in Fig.2 does
not actually have a branch which is a model for theory C, but that tree
would have branch models for another colog theory having the following
rule: true => v(a) | w(Z).

Lemma 4. Any model tree over a given signature can be built using some
coherent theory associated with the signature.

3 Categories of model trees and dynamics

Suppose that Σ is a coherent signature. We define a category MΣ whose
objects are the model trees having signature Σ, and whose morphisms
are the model tree branch morphisms defined in the previous section.

The objects of MΣ are also referred to as states or model states to
emphasize that the trees are partial, or potential world models for the
signature. The final states are the model trees which are proof trees.

Now let us suppose that C is a colog theory having signature Σ. In
addition let us suppose that C has n rules. The rules of C act on objects
of MΣ using a natural transition function:
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δ : MΣ × n→MΣ (1)

If T is a model tree object of MΣ , and i is the index of a rule in C, then

δ(T, i) = T ′ (2)

where T ′ is the model tree obtained by extending the branches of T using
all applications of the ith rule of C. We emphasize that the ith rule is
completely applied to each branch of T , that is, all possible extensions are
made. We also assume, as in [2], that an application makes no extension
to any branch to which it does not apply or on which the rule is already
fully satisfied.

As an illustration, let us suppose that we have the model tree shown
in Fig.4.

true0

p(b)1

q(a)2

q(b)3

p(a)4

Fig. 4. T

and consider a full application of rule p(X), q(X) => r(X) to the tree,
result shown in Fig.5. Notice that there is a morphism embedding tree T
into tree T’.

If we curry the δ function we have a function MΣ→ (n→MΣ). This
function is taken to be the dynamics that the rules of C impose on the
category MΣ .

Definition 6. An abstract dynamics for MΣ consists of a finite index
ordinal n and a function α : MΣ→ (n → MΣ), such that for any mor-
phism of model trees m, and any index i from n, we have a commutative
diagram as depicted in Fig.7, for some some model tree morphism mx.

The intention of the diagram in Fig.7 is to also impose the condition
that the composite function i ◦ α is a model tree morphism.
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Fig. 5. T ′ = δ(T, i)
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Fig. 6. Model tree extension mx after dynamics application

An abstract dynamics only specifies a sequence of n actions produced
for each object of MΣ . The definition abstracts away any mention of spe-
cific coherent logic rules. We wish to study how a coherent theory might be
gleaned from such an abstract dynamics. The abstract dynamics amounts
to a kind of “coherent” semantics for MΣ , but without specification of
the rules.

Lemma 5. Suppose that C is a colog theory and δ is the state-transition
function. Then the dynamics associated with δ satisfies the diagram re-
quirement in the definition for abstract dynamics.

Proof. Suppose that we have a branch inclusion morphism m : T1 → T2.
Consider any branch B of T1. The rule application i◦α to T1 is a model tree
morphism which extends B using all possible satisfactions, and similarly
for the branch B′ in T2 that corresponds to B under m. Thus, we also
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have Bx ⊆ B′
x, for the extended branches respectively. Since this holds

for each branch Bx of T1, we get a morphism m : T ′
1 → T ′

2. ut

We note that other possible definitions for Skolem machine transition δ
might make things so that the Lemma would not hold. For example, con-
sider the identity morphism id : T → T for the tree in Fig.4. Now suppose
that the rule p(X), q(X) => r(X) were applied nondeterministically to
T , say using the choice (p(b)@1, q(b)@3) on the source tree, and using
the choice (p(a)@4, q(a)@2) for the target tree. Then the resulting trees
could not be morphed. Even a deterministic definition for δ might not
be sufficient. A similar counterexample to the one just described shows
that defining δ as the earliest-first satisfaction of the rule (and only one
application) would not be sufficient to obtain the Lemma2.

If C is a colog theory, we can also consider the category MC whose
objects are only the model trees which are also colog trees built using
C. The morphisms of MC are the morphisms between colog trees. Let
H : MC → MΣ be the inclusion functor. Notice that a Lemma 2 also
holds in the category MC.

4 Similarity of coherent theories

Definition 7. We say that colog theory C2 covers theory C1, or in sym-
bols

C1 ⇒ C2 (3)

provided both theories have the same signature Σ, and for each colog tree
T in MC1 there is a similar tree T ′ in MC2, i.e., T ≈ T ′.

Definition 8. Define C1 ⇔ C2 to mean that both C1 ⇒ C2 and C1 ⇒
C2 hold, each theory covers the other.

Lemma 6. If theory C2 is a reordering of C1 then C1 ⇔ C2

The relation ⇔ is an equivalence relation for colog theories which
have the same signature. A more general formulation could allow different
signatures, such as renamings of constants, functions and predicates.

A counter model T in MC is a model tree which is not a proof and
has some branch with no extensions under the theory dynamics.

2 Hint: consider the tree of Fig.4 and another tree with the branch propositions re-
ordered; clearly each morphs to the other, but earliest-first rule application could
produce distinct extensions.
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Lemma 7. If C1 ⇔ C2 then proofs (resp. counter models) for one theory
correspond to proofs (resp. counter models) for the other.

Proof. . . . details ???

5 Colog theory representations for abstract dynamics

The natural question to ask would be: Is every abstract dynamics on the
category MΣ determined by some colog theory with the same signature?

First thoughts regarding this question suggest that a geometric theory
G could be constructed by using grounded rules that represent all of the
extensions T → (i ◦ α)(T ) for all T ∈ MΣ . (Consult Fig.7.)

G = {A(T )⇒ C((i ◦ α)(T )) | T → (i ◦ α)(T )} (4)

where A(−) are the branch antecedents and C(−), the branch conse-
quents, are determined by the added propositions in the extended tree
specified by the dynamics. This is possibly an infinite geometric theory.
Many of the rules might be characterized by the introduction of variables
using some coherent rule. Disjunctions in consequents of rules arise from
the branchings for the trees.

For example, let us create a small dynamics and then compile a colog
theory from the dynamics so that the colog theory generates the same
dynamics.

We seek some reasonable way to stipulate a finiteness or chaining
condition that would result in a (finite) coherent theory.

6 Coherent topos with dynamics

. . . products of model trees, conjunction ?
coproducts of model trees, disjunction ?
how dynamics using topos versions ?
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——————

A Prototypical F-Coalgebra Dynamics Patterns

Coalgebra dynamics are usually defined with reference to a simple F-
coalgebra pattern, where F is a category functor. Attempts to extend the
naive pattern requires stressful categorical acrobatics.

Suppose that F : C → C is a functor on category C. An F-coalgebra
consists of a pair A,α where α : A→ FA, such that if A,α and A, β are
F-coalgebras and with h : A→ B a morphism of C, then Fh ◦α = β ◦h.

A B

FA FB

h

α

Fh

β

Fig. 7. Coalgebra morphism preservation

Assume that C = Set (sets). For a transition machine depending on
current state and input symbol we might use FX = XA, where A ∈ Set
is set of inputs, and the coalgebra would be δ : X → FX, or in short
curried form δ(current state, input symbol) = next state. For inputs A
and outputs B, a functor pattern would be FX = (X × B)A. Start and
final states can be coded in various ways. The instruction action, program
or inference of the coalgebra is the mapping δ : X → A→ (X ×B).

It is a good exercise to express various Mealy and Moore machines
in coalgebra forms – likewise, for Turing machines. Extending or adapt-
ing naive coalgebra patterns for more complicated machines requires some
stressful categorical acrobatics. See the references in the Wikipedia entry[6].
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