
Implementing the

Skolem Abstract Machine

John R. Fisher
jrfisher@cpp.edu

last update = January28,2020

This report describes an open implementation design for a Skolem Ab-
stract Machine. This report was started in February 2012. Since then
there have been various changes or refinements to the design and corre-
sponding implementations to test the design changes. The last modifica-
tion/correction date for this report is posted above. The implementation
design patterns are as follows:

1 Branch indexing

2 QDF search algorithms

3 QDF Fairness

4 Proof Relevance

5 Distributive rule choices

6 Tabular indexing

7 Consequent forwarding

8 Complexity cut mechanism

9 Projects

The machine code for a Skolem Machine is a colog theory. A colog theory
is a finite sequence colog rules. See the colog primer [1] for various examples
of colog theories. Before studying this implementation design report, the
reader is advised to read the colog primer[1] and run the examples from the
primer using the GUI version of the colog14I prover[2].

1

1 Branch indexing

A coherent logic theory is a finite ordered sequence of colog rules. This
section describes how colog rules are used to expand a search branch for a
Skolem Machine implementing the colog theory. We describe structures to
hold facts on the branch and a bindings array for each rule.

To review the basic concepts, let us reconsider a simple example from the
introduction of [4]. The following colog theory has six coherent logic rules.
The free variables in the consequent of rule #1 and one of the disjuncts
of rule #2 are existential variables. When such a rule is satisfied and fires
it introduces a new Skolem constant as value for the existential variable.
The | in the consequent of rule #2 is disjunction; conjunctions of atoms are
separated with commas.

// Example 1.1

true => domain(X), p(X). % #1

p(X) => q(X) | r(X) | domain(Y), s(X,Y). % #2

domain(X) => u(X). % #3

u(X), q(X) => false. % #4

r(X) => goal. % #5

s(X,Y) => goal. % #6

Figure 1 shows a QDF proof for the little theory above. The LATEX source
code for search tree pictures were automatically generated by a QDF colog
prover.

A colog prover using a QDF search algorithm (Section 2) first saturates
the leftmost branch and then backtracks to the branch point (3), saturates
the second branch, backtracks to the branch point (3) again, and then sat-
urates the final branch.

Serial implementations use just one active branch. When the machine
backtracks, it then reuses the portion of the branch below the branch point
and writes over the previous facts left over from the last branch probe.
Branches are arrays of facts (Fact objects). A depiction of the pictured tree
using a single branch might look like this:

0 1 2 3 4 5 6 7

[true,domian(sk0),p(ski),u(sk0),q(ski), false ...]

[,r(sk0), goal ...]

[,domain(sk1),s(sk0,sk1),u(sk1),goal, ...]

The functors of a colog theory (predicates and functions) are themselves
indexed by name/arity. For the current theory the predicate indices are

2

true0

domain(sk0)1

p(sk0)2

u(sk0)3

q(sk0)4

false5

r(sk0)6

goal7

domain(sk1)8

s(sk0, sk1)9

u(sk1)10

goal11

������ �
�
PPPPP

Figure 1: Proof Tree, Example 1.1

0 : true

1 : goal

2 : false

3 : domain

4 : p

5 : q

6 : r

7 : s

8 : u

The positions of current facts on the branches is managed by three arrays

first[−] of size equal to number of predicate names

last[−] of size equal to number of predicate names

jumpto[−] of size equal to size of branch

These arrays are updated by rule applications as facts are added to the
branch, and the arrays are appropriately reset when control returns to a
branch point. In particular, reconsider the third branch B of the tree above
at the time that it saturates:

0 1 2 3 4 5 6 7

[true,domain(sk0),p(ski),u(sk0),domain(sk1),s(sk0,sk1),u(sk1),goal,...]

3

At this time we have

first = [0,7,*,1,2,*,*,5,3]

last = [0,7,*,6,2,*,*,5,3]

jumpto[0]=*

jumpto[1]=4

jumpto[2]=*

jumpto[3]=6

jumpto[4]=*

jumpto[5]=*

jumpto[6]=*

jumpto[7]=* ...

The * indicates a sentinal value (say the size of the branch) indicating that
there is no relevant value. So, for a particular example, the first occurrence
of ‘domain/1′ (index=3) is located at position first[3]=1 on B, and the next
is located at position jumpto[first[3]]=jumpto[1]=4=last[1], and so there are
no more to jump to. This illustrates the basic calculation mechanism for
predicate position indexing on B.

This basic indexing is enhanced by adding other position information
(distributive choices, tabular indexing) to ensure fairness of antecedent match-
ing, avoid resatisfaction of antecedent factors, and speed.

A rule is applicable at the focus point on the branch provided that its
antecedent conjunction of factors matches facts at or above the focus point
and that its consequent (disjunction of conjunctive factors) is not already
satisfied using facts at or above the focus point.

Active rules are objects compiled from colog rules. Part of the dynamic
data of an active rule is a binding table that is used when attempts are made
to match rule factors (antecedent or consequent) against branch facts. The
binding table records variable matchings in a factor by remembering which
ground term is bound to a variable.

To illustrate how a binding table works consider another small colog
theory:

// Example 1.2

true => p(a), p(b).

p(X), p(Y) => q(X,Y,Z), p(Z). // existential rule

q(b,A,B) => goal.

Referring to search tree in Figure 2 at branch index 6, the second rule can
be satisfied and produce the inference whichs asserts the facts at positions
7 and 8.

4

A variable binding table is a matrix of ground functors indexed on the
left by variables (themselves being indexed using nonnegative integers) and
indexed across the top by nonnegative integers representing the predicate
factors in a rule.

To illustrate, consider the second rule of Example 1.2. This rule has
three variables, 2 antecedent factors (index 0 and 1) and two consequent
factors (index 2 and 3). The bindings in the table are shown in equation 1.

factor 0 1 2 3
X/0 b - - -
Y/1 - a - -
Z/2 - - sk2 -

choice 2 1

(1)

The inference in question (and the factors) is

0 1 2 3

p(b), p(a) => q(b,a,sk2), p(sk2).

The table shows what the antecedent bindings were matching the antecedent,
and the branch position choice that produced that match. The consequent
was not already satisfied for those choices, so a binding of sk2 was created
for Z in the third factor, and these bindings were used to generate the facts
asserted at branch positions 7 and 8.

These details do not explain why the particular choices for matching
on the branch were made. That involves a distributed choice mechanism
explained in Section 5. The next Section 2 explains why a fair choice mech-
anism is needed, of which the distributive choice mechanism is an excellent
specification.

5

true0

p(a)1

p(b)2

q(a, a, sk0)3

p(sk0)4

q(a, b, sk1)5

p(sk1)6 % 2nd rule applicable

q(b, a, sk2)7

p(sk2)8

goal9

Figure 2: Example 1.2

2 QDF search algorithms

There is an interesting family of depth-first proof search algorithms for a
Skolem Machine associated with colog theory. These QDF algorithms all
use a queueing mechanism to delay the activation of rules that would gener-
ate new constants or functions (like rule #1 and #2 in the previous section).
Q rules are those rules that the compiler adds to the queue. Other rules are
non-Q, or sometimes called definite rules. (A smarter compiler can also put
complex rules in the queue, such as those that introduce new functions in
the antecedent – a detail not discussed here.)

Pseudo-code for QDF search might look something like this . . .

6

start tree with true root

until the tree is saturated

expand the branch {
D: use all applicable definite rules in order

until D-saturation and then

Q: dequeue (and add) until there is an applicable Q
rule

extend branch using the first consequent

store list of remaining consequents at this branch
point

} until the branch is saturated (goal or false leaf or stuck)

go up to the first relevant branch point (backtrack)

extend branch using first of consequent list at branch point

QDF search algorithm template (2)

At D, repeatedly apply definite rules until none apply (saturate branch).
At Q, dequeue the first Q rule and requeue that rule until a rule applies (or
no rule applies). This is a round-robin attempt to find one applicable Q rule.
The algorithm generates a counter model when a branch saturates with no
goal or false, but of course the algorithm might not terminate if there is an
infinite branch.

The role of the rule queue Q is to delay the use of rules that produce
new functions (including constants), and allow definite rules to saturate a
branch before introducing new functions. The good effect of this approach
is illustrated in the examples from [1]. (There may be other effective ap-
proaches.)

The primary task for ensuring logically complete implementations in-
volves methods that ensure that the application of rules is fair, which we
illustrate in the next Section 3.

7

3 QDF Fairness

A QDF search algorithm is fair provided that the methods it uses to apply
rules does not hide any possible antecedent matching choice. A hidden
matching choice is one which never occurs no matter how long the search
algorithm processes rule applications on a branch.

We can illustrate this by reconsidering Example 1.2 from Section 1.

// Example 1.2

true => p(a), p(b).

p(X), p(Y) => q(X,Y,Z), p(Z). // existential rule

q(b,A,B) => goal.

The relevant issue (for this particular example) is how the choices are
determined for matching the antecedent of the second rule.

Let us first investigate an unfair regimen for applying the second rule.
Suppose that the branch expands as follows . . .

true

p(a)

p(b)

q(a,a,sk0)

p(sk0)

q(a,b,sk1)

p(sk1)

q(a,sk0,sk2)

p(sk2)

q(a,sk1,sk13)

p(sk3)

q(a,sk2,sk4)

p(sk4)

q(a,sk3,sk4)

p(sk4)

... forever

The second rule is being applied to each new possible match binding
for Y, ignoring the fact that X might make new matches. This resembles a
control order similar to

for all X

for all Y

....

8

where the inner loop on Y is continues before the outer X loop is revisited
for new values. The relevant issue is that X never sees b because Y continues
to have new matches.

This is not the only manner in which unfairness could arise using an
antecedent choice mechanism. It is only a simple illustration.

A general solution requires a mechanism for achieving all matches before
overall advancement. The advantage to the distributive choices mechanism
in Section 5 is that that mechanism also avoids previous choices that would
already have been satisfied.

9

4 Proof Relevance

For a proof branch (goal or false leaf) a relevant branch point is one
representing a splitting rule that was actually used to infer the tip of the
branch. Here is a simple example having an irrelevant branching point.

// Example 4.1

true => p.

p => q | r | s.

p => goal.

A proof tree is

true0

p1

q2

goal3

Figure 3: sample tree

and the extracted proof is

@0, rule1: true => p

@2, rule3: p => goal

The inference at branch point 1, p => q | r | s is unneeded for the proof.
A simple algorithm for marking used inferences is used to determine relevant
branching points and those that are not relevant are ignored. A more precise
specificication of an algorithm is left as an exercise for the reader (but see
also Example 4.2 and 4.3 below).

Fig. 4 gives some relevancy data for proofs of several theories. In partic-
ular, note that the theory rhp.20.in (provided by A. Polonsky) has many
irrelevant branches, whereas other similar versions – rhp.20.gd (type guards
automatically added) and rhp.20.min (even more type guards, by hand) –
encounter many fewer irrelevant branches. Also, the first theory pd cro.cl

(M. Bezem and D. Hendriks) has scant irrelevancy, but the run times with
and without the relevancy check shows that the checking does not take in-
ordinate time. Conversely, for such a theory, not checking does not produce
abundant irrelevancy.

10

Figure 4: Some Relevancy Data

Computing relevancy proceeds bottom-up from the leaf of a branch,
marking the branch positions where inferences were used to produce a fact,
and then recursively doing the same for the antecedents of the facts which
constitute the antecedent of the rule application, up to root. The choice
points on the branch which are marked as used are then the branchings
that need to be expanded, and ones not so marked can be ignored. With
appropriate data structures for the relevant data, the algorithm is quite
fast. But it is important to emphasize that the relevance concept requires
that any branch below a choice point might contribute to the choice being

11

relevant (and not just the first completed or leftmost branch). Here is a
simple example to illustrate this proof phenomenon.

// Example 4.2

true => q | r.

true => a | b.

a => goal.

b, q => goal. \% delayed relevance for 1st rule

r => goal.

Consider the proof tree

true0

q1

a2

goal3

b4

goal5

r6

a7

goal8

b9

goal10

!!!!

#
#
c
c

aaaaa

�
��
c
c

Figure 5: proof tree for Example 4.2

The inference true=>q|r at node 0 becomes relevant due to the inference
q,b=>goal at node 4 because q at node 1 is required in the antecedent of
the latter rule. Thus it is that the second branch determines the relevancy
of the choice at node 0 and not the first branch.

Now, let us modify the example slightly, as follows:

// Example 4.3

true => q | r.

true => a | b.

a => goal.

b => goal. \% q no longer needed, compare Example 4.2

r => goal.

12

The 4th rule now does not need q in its antecedent, so the choice at node
0 is no longer relevant, and not expanded in the proof tree.

true0

q1

a2

goal3

b4

goal5

#
#
c
c

Figure 6: proof tree for Example 4.3

13

5 Distributive Rule Choices

Distributive rule choices or DC for short is an algorithm for selecting facts
on the current branch which satisfy the antecedent of a coherent logic rule.
We motivate the algorithm by descriptions first for rules with two antecedent
factors in the rule, then three, etc. Each case, dependent on the number
of antecedent factors, gives rise to a finite state machine that marshals the
matching choices for the rule.

An effective implementation then compiles colog rules into codes that
correctly compute the finite-state machines.

Fig. 7 depicts choice ranges for a rule with two antecedents. In the
figure the ranges for choices for p are labeled A and C, and the ranges for
q are labeled B and D. The C and D ranges depict extended ranges. An
expression like AB stands for all choice pairs [i, j] where i falls in range A
and j falls in range B. The iteration of choice within ranges is enabled using
the indexing arrays first[], jumpto[], and last[] for the predicates (from
Section 1).

The terminology distributive ranges draws on an analogy with the dis-
tributive law formula.

(A+ C)(B +D) = AB +AD + C(B +D) (3)

where the range (A+C) signifies A together with C, for example. The
formula can be read to mean that, after considering the initial choice range
AB, and then extending with C snd D, compute the new choices in a manner
indicated by the expressions AD and then C(B+D). Notice that the ranges
AB, AD, and C(B+D) are mutually exclusive, and thus the initial or prior
range AB is not revisited when considering the extended ranges, and neither
does either extended range AD or C(B +D) impinge on the other.

Conventional backtracking algorithms easily apply to give complete it-
eration of all possible choices within the subranges AB, AD and C(B+D).
If new range choices were dynamically allowed – rather than delayed for
later DC state – conventional backtracking algorithms fail to be fair : the
last item for iteration blocks later items for earlier choices as explained in
Section 3. The distributive choices approach, together with saturation of
ranges within a DC state, corrects this fairness problem and it also speeds
up new inferences because it obviates the need for reconsideration of previ-
ous choice ranges. Also, in-state saturation of ranges can easily be designed
to not repeat those specific choices.

The 2-distribution formula applies similarly for each subsequent exten-

14

Figure 7: Distributive 2-Choices

sion to the ranges, after the prior range choices are exhausted. The distribu-
tion formula is the basis for a finite state machine also depicted in Fig.7. The
start state is state 0 (range AB). After depleting choices in the range of state
0, transition to state 1 (range AD). After depleting choices in the range of
state 2, transition to state 2 (range C(B+D)). The states 1 and 2 then con-
stitute a super-cycle for additional range extensions. One can demonstrate
that a subsequent extension E and F distributes in the same 2-pattern as
that already considered: (A+C +E)(B +D+F) = (A+C)(B +D) +
Thus, the distributive choice algorithm is dynamically stable as choice ranges
extend while the search branch extends.

The 1+2 state machine thus becomes the basis for the compilation of a

15

2-rule into a process that applies the rule choices on a branch in accordance
with the range choices determined by the state machine. The rollback tran-
sition corresponds to the control adjustments that need to be made when a
delayed branch is considered. This depends upon whether the choices are
serially considered (rollback must check ranges on the previous branch) or
concurrently (rollback does nothing but a new branch is spawned).

For further motivation to establish the general DC pattern, consider the
case of a 3-rule, a rule having three antecedent factors. The state-machine
picture is depicted in Fig. 8.

Figure 8: Distributive 3-Choices

In this case, the corresponding state machine has 1+3 states, and a 3-
rule is compiled to a process that applies the rule choices on a branch in
accordance with the range choices determined by the state machine.

16

Four a colog rule having 4 antecedent choices, consider the picture in
Fig. 9. The red bars indicate active range choices.

Figure 9: Distributive 4-Choices

The general problem is to consider a colog rule having N factors in its
antecedent. The QDF algorithm is modified so that the rule applications
are restricted to a current range-choice state until all of those choices have
been tried, and then advance to the next state. When all states have ben
visited, the choice ranges are enlarged in state 0 to include new branch facts
that rules have asserted to the branch since the previous visit to state 0.

A distributed choice rule is inherently fair : Given any possible an-
tecedent choice on a branch, there is some distributed range that includes

17

the given choice. However, distributed choices do not necessarily produce
earliest-first choices.

An interesting statistic for measuring the efficiency of a colog implemen-
tation is a ratio of effective inferences, defined as

ρ = #effective inferences / #attempted inferences (4)

An attempted inference occurs when the rule choices do match the an-
tecedent of a rule. An effective inference occurs only when the consequence
is new (not subsumed on a branch by previous facts), in which case the in-
ference adds new facts to the branch. If no rule ever revisits previous choices
(as with DC) then ρ measures some kind of maximal effectiveness, which
is a property of the colog theory itself. Keep in mind that a rule can eas-
ily produce repeated consequences for many different choices of antecedent
factors, so we would seldom have ρ = 1.

5.1 branch switching

Suppose that R is an active rule of the colog theory. A critical computation
is one that determines which choice ranges for R are safe to use after a
branch B is saturated and the appropriate new branch B′ is explored at a
branch point p. R may have asserted facts to the old branch B below the
branch point p, and so those choices are not relevant to B′. R may have
used some unsuccessful choices on B which lie below p, and so those choices
are again not relevant to B′. In either case, the choice ranges need to be
adjusted.

A completely safe strategy is to restart the DC choice ranges after a
branch switch, for all active rules. The essential problem with this con-
servative strategy is that many of the DC choice-range computations (and
any successful inferences) may be above the branch point. Deciding how to
rollback the choice ranges is a challenging problem.

18

6 Tabular indexing

When the colog reader reads a colog rule it analyses the rule by looking at
all of the factors in the antecedent and consequent in left-to-right order. In
order to fix ideas let us work with a specific example of a rule.

The idea here is to compute the patterns of bound variables in rule
factors as they are encountered left-to-right. These are called key patterns.
These key patterns can be computed using static analysis of the input theory
when it is loaded. Here is a concrete example.

0 1 2 3 0 1 0

p(X), q(Y), r(X,W), r(W,Y) => s(Z), t(X,Z) | w(X,Z).

[f] [f] [t,f] [t,t] [f] [t,t] [t,t]

where t=true and f=false. So for example, the the 2-factor of the antecedent
r(W,Y) has X bound and W unbound when an attempt is made by the rule
to match this factor. That is, the variable binding table will have a value
stored for X but not for W at that time, as outline in the discussion around
Equation 1 in Section 1 (using, of course, a table appropriate for the present
rule). The key patterns for a factor are stored in the factors as boolean
arrays.

Note that the key patterns can also be used to compute a match order for
factors. Some efficiency is gained by attempting to match bound variables
first, in order to allow fast-fail and also so as to limit the possibilities for
branch facts to actually match the factor.

A literal factor is said to be factual provided that all of its variables
are bound in the rule binding table at match time. A factor is said to be
subfactual provided that at least one, but not all, of its variables are bound
in the rule binding table at match time. If a factor is neither factual nor
sub factual, then it is a free factor.

For colog14I, if every antecedent literal factor of a rule is a free fac-
tor, then an attempt to satisfy the antecedent of the rule uses the basic
branch indexing (distributive choices with jumpto[] as explained in Sec-
tion 1). Otherwise, the branch fact hash table is employed to satisfy all of
the antecendent literal factors of the rule. Checking to see if a consequent
conjunction is already satisfied uses either the fact hash table for bound
consequent factors or a stepwise approach for existential factors. 1

1A more sophisticated future approach would be to use plain DC for a free antecedent
factor and employ the fact hash table for a factual or subfactual antecedent factor on
a factor-by-factor basis rather than for the entire rule antecedent. Similarly for ”new”
consequent checking.

19

The branch fact table is the essential device for tabular indexing. The
table is a custom hash table which stores branch positions (indices) of facts
on the branch which have hash values associated with key pattern for a rule
factor.

Given a rule factor f (Functor object),

bucket[factor] = tree.table.get(keyHashCode(f))

returns a bucket list of positions of facts on the current tree branch table
which have the same keyHashCode as the factor f, and then linear search
of this list attempts to find an exact computed match of the rule factor to
some branch fact. This scenario is typical for table probe mechanisms.

Here is the Java source code for the factor keyHashCode calculations:

protected int keyHashCode(Functor f) {

int h = f.index ;

for (int i = 0 ; i < f.arity ; i++)

h = (h<<5) + (f.key[i] ? hashCode(f.args[i]) : 0) ;

return h ;

}

/**

* @return factual hash value of terms using the current table bindings.

* This call is only made for BOUND Terms.

*/

public int hashCode(Term t) {

int hc = 0 ;

if (t.isVariable()) {

int v = ((Variable)t).index ; // which variable?

for(int c = 0 ; c < C ; c++)

if (table[v][c] != null)

hc= Fact.hashcode(table[v][c]) ;

// N.B. variable must be bound

}

else { //t is a Functor

hc = ((Functor)t).index ;

for (int i = 0 ; i < ((Functor)t).arity ; i++) {

int h = hashCode(((Functor)t).args[i]) ;

if (h == 0) return 0 ; // unbound arg ???

hc = (hc << 5) + h ;

}

20

}

return hc ;

}

Although the other details may be sketchy, the essential calculation is the
ubiquitous shift-left 5 dictionary hash code calculation. Experiments show
that this hash function is reasonably diverse, but there are probably sharper
functions that could be explored. Table entries are further distinguished as
to whether entries in the buckets contain a factual or a subfactual entry. The
table is populated when facts are asserted to branch and the table is used to
retrieve possible matching branch positions when rule factors are matched
against branch facts. Possible matches retrieved by hash code must then
actually match, and this may cause new rule bindings for later factors. Of
course, one needs to make some allowance for when the shift hash code
overflows the return type.

It is important to emphasize that tableing described above affords an
efficiency improvement for the distributive choice algorithm as formally de-
scribed in section 5 where branch indexing used only predicate names and
arity.

One uses a hash table to store branch positions that hold facts that
entangle a more restrictive hash value (e.g., name, arity and combined ar-
gument hash values). The more restrictive hash functions eliminate failing
choices that would otherwise entangle a factor using a more generous hash
value (name, arity). So, more restrictive entanglement profiles eliminate
many choices that were bound to fail anyway.

We assume that tabeling uses buckets where branch choices are lin-
early ordered in a way that if choice a=branch[i] is retrieved before choice
b=branch[j] then i<j, and vice versa. In this way, an earliest-first infer-
ence regimen would be imposed, which makes run-time inference testing
more intuitive.

The GUI version of the colog prover allows inspection of the branch fact
table (under ”options” menu).

21

7 Consequent forwarding

As explained before, an active rule matchs antecedent factors in left-to-right
order. One approach to triggering a colog rule is to find a matching for all
the the antecedent factors and then check to see that none of the consequents
are already satisfied the current branch.

As a concrete example consider the following rule (borrowed from Marc
Bezem’s pd cro.in theory):

i(A,L),i(B,L),i(C,L),i(D,M),i(E,M),i(F,M),

i(B,N),i(F,N),i(G,N),i(C,O),i(E,O),i(G,O),

i(B,P),i(D,P),i(H,P),i(A,Q),i(E,Q),i(H,Q),

i(C,R),i(D,R),i(I,R),i(A,S),i(F,S),i(I,S)

=> l(N,O) | l(P,Q) | l(R,S) | % degeneracy, false cases

l(T,T),i(G,T),i(H,T),i(I,T). % goal seeking

The antecedent of the rule has 24 factors. Spying on this rule during a
proof search with a width limit of 132 branches (an unsuccessful attempt)
produced the following statistics for subsumed (repeated) consequents:

...

=> l(N,O) | 25,244,561

l(P,Q) | 7,373,678

l(R,S) | 2,950,061

l(T,T),i(G,T),i(H,T),i(I,T). 318,0091

If we were to check a factual consequent as soon as its variables are bound
in the antecedent, and if the consequent is tabled then we do not have
to continue with the matching of antecedent factors. For example, if we
had checked l(N,O) as soon as N and O became bound in the antecedent,
we would have voided many of the 25,244,561 continued matches for the
remaining 14 antecedent factors to the right of i(C,O). So the rule, might
be compiled so that, in effect, it would look like this:

i(A,L),i(B,L),i(C,L),i(D,M),i(E,M),i(F,M),

i(B,N),i(F,N),i(G,N),i(C,O), \$not(l(N,O)), i(E,O),i(G,O),

i(B,P),i(D,P),i(H,P),i(A,Q), \$not(l(P,Q)), i(E,Q),i(H,Q),

i(C,R),i(D,R),i(I,R),i(A,S), \$not(l(R,S)), i(F,S),i(I,S)

=> l(N,O) | l(P,Q) | l(R,S) | % degeneracy, false cases

l(T,T),i(G,T),i(H,T),i(I,T). % goal seeking

where the $not(C) factors suggest that at their point of occurrence, one
should check to see that C is not tabled: If C is tabled, then backtrack

22

on the matching process up to this point, or otherwise proceed (a kind
of negation-as-failure). Experiments show that this can effect considerable
speedup in the rule application process. This compilation device is called
consequent forwarding. Notice that code analysis to determine forwarding
data requires only static analysis of the relevant input rule, and not run-time
checking, so that the forwarding is a compiler optimization.

23

8 Complexity cut mechanism

The complexity cut mechanism is the only heuristic method currently used
to limit inferences for colog provers. 2 It can block logical completeness. It
can very effectively shorten proof searches, especially for algebra theories,
or other colog theories with complex occurrences of functions.

The complexity of a colog term is the depth of function nesting. The
complexity of a colog predicate (rule factor) is the maximum complexity of
its arguments – 0 if there are no arguments. The complexity of a conjunction
of factors is the maximum complexity of its factors, and the complexity of a
disjunctive rule consequent is the maximum complexity of all of it disjuncts
(each of which is a conjunction). Finally, a rule is complex if the complexity
of it consequent is larger than the complexity of its antecedent.

Complex rules are also added to the rule Queue Q, as described in Section
2. Complex rules might add new logical data for which rules would become
newly applicable. Queueing complex rules slows down the proliferation of
new data until definite rules have a chance to saturate their consequences.

As an example, see Section 6.3 of the colog primer [1] where an abstract
algebra example is given. Algebraic operation can introduce abundant op-
erator terms, and complexity limitation can be very effective for achieving
proofs in less time.

2except search tree depth and width limits, which seem more like resource limitations

24

9 Projects

These suggestions are now (January 28, 2020) deprecated. The Autolog
project (2018 . . .) addresses some of these issues.

9.1 concurrency/parallelism

One possible approach would be to spawn parallel branch searches for all rel-
evant branches above a saturated leaf. A similar experiment was explored in
2009 [3], before much of the serial indexing was implemented (see appendix
to the report).

9.2 answer extraction

Section 2 of [4] defines a query associated with a colog theory. Design a
query answer mechanism for a Skolem Machine.

9.3 complexity and other heuristics

Refine complexity calculations or invent other heuristics for guiding or re-
stricting Skolem Machine operations.

9.4 computing conflicted theories

See reference [4], Section 7, concerning conflicted colog theories. Design
SAM tools to aid in the computation of conflict.

25

References

[1] Coherent Logic via colog (colog language primer)
Linked at the SkolemMachines.org website: colog.pdf.

[2] Colog prover, colog14I.jar. Available at SkolemMachines.org website.
Runs as GUI or from command line. Start GUI by double-click on jar,
read info under the ??? tab.

[3] Concurrent coherent logic report (2009).
http://SkolemMachines.org/reports/cocolog09-19ver/cocolog.pdf

The runtimes table in the appendix illustrates the large gains in speed
due to SAM indexing (rather than parallelism).

[4] John Fisher and Marc Bezem, Skolem Machines, Fundamenta Informat-
icae, 91 (1) 2009, pp.79-103.
Linked at the SkolemMachines.org website: SkolemMachines.pdf
(Note that “colog” is called “geolog” in this paper. The link is to a copy
with minor corrections.)

26

	Branch indexing
	QDF search algorithms
	QDF Fairness
	Proof Relevance
	Distributive Rule Choices
	branch switching

	Tabular indexing
	Consequent forwarding
	Complexity cut mechanism
	Projects
	concurrency/parallelism
	answer extraction
	complexity and other heuristics
	computing conflicted theories

