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Abstract

This technical note describes an enhanced depth-first algorithm that searches for proofs for co-
herent logic theories. The coherent theories are expressed as a finite set of geolog rules. The proof
search uses geolog trees. The current branch is searched top-down in order to satisfy the antecedent
of a geolog rule. The definite rules are allowed to saturate a branch with consequences, but the in-
definite existential rules are given turns via queue waiting. In addition, the queued rules use a kind of
earliest-first satisfaction regimen, in order to not miss matches with facts and promote the likelihood
of termination.

NOTE: Starting with version 2.1, the Colog prover implements a more efficient distributive
choices rule compilation method [5] which replaces the earliest-first method employed in previous
versions. The strategy for queueing existential and complex rules remains, however.

The principle advantage of the QEDF algorithm specified is theoretical completeness for coherent
theory proof search in the case of theories without function symbols.

After a discussion involving theories without function symbols, we extend the QEDF algorithm
to theories having function symbols. The extension requires breaking cycles of functional rules
within the theory using the queue.

1 QEDF search procedure defined

Suppose that C is a coherent theory specified as a finite ordered sequence r1, . . . ,rn of geolog rules,
as described in [2],[3],[4]. Until section 3, we explicitly assume that the geolog rules do not contain
functions in the arguments of the predicates.

The depth-first search algorithm in [2] is modified so that existential rules Q are distinguished from
the non-existential, or definite, rules D. The existential geolog rules are those that have at least one free
(existential) variable in the consequent of the rule. We have C = D∪Q, as sets, but we assume that the
ordered sequences D and Q are relatively ordered as they are in C.

We assume that Q is enhanced with circular queue operations remove and add. In particular r =
remove(Q) followed by add(Q,r), would removed r from the front of Q and move it to the rear of the
Q queue. The purpose of queueing Q is to limit the generation, or introduction, of new eigenvariables
(a.k.a. Skolem constants) in a manageable fashion.

We want to impose the restriction that existential rules are satisfied using earliest-facts first. A simple
demonstration of this principle is afforded using the following sample theory. Notice that the second rule
is existential: Z is an existential variable.

true => p(1), p(2), p(3).

p(X), p(Y) => q(X,Y,Z). // existential rule

Figure 1: Sample theory

Consider the two complete geolog trees for the sample theory depicted in Fig. 2.

1



QEDF J.Fisher

true0

p(1)1

p(2)2

p(3)3

q(1,1,sk0)4

q(1,2,sk1)5

q(1,3,sk2)6

q(2,1,sk3)7

q(2,2,sk4)8

q(2,3,sk5)9

q(3,1,sk6)10

q(3,2,sk7)11

q(3,3,sk8)12

true0

p(1)1

p(2)2

p(3)3

q(1,1,sk0)4

q(1,2,sk1)5

q(2,1,sk2)6

q(2,2,sk3)7

q(1,3,sk4)8

q(3,1,sk5)9

q(2,3,sk6)10

q(3,2,sk7)11

q(3,3,sk8)12

Figure 2: Lexical order (left) vs. earliest-first (right)

In the left tree of Fig. 2, the second rule is satisfied in a kind of lexical order, matching the facts at
positions 1, 2, and 3 in the tree. In the right tree, the second rule is satisfied using earliest facts first.

Supose that an existential rule has antecedent A1,A2, . . . ,An. The antecedent factors might match
facts on a branch of the geolog tree at various positions. Suppose that < p1, p2, . . . , pn > is a positional
match. This means that Ai matches the fact at position pi in the tree, for i = 1,2, . . . ,n. (The matchings
must of course be consistent for variable bindings.)

We say that a matching < xi > is earlier than matching < yi > provided that Σxi < Σyi or else
Σxi = Σyi but max{xi}< max{yi}. (Otherwise, the matchings are equally early.) The matchings amount
to a kind of time stamp for the satisfaction of the antecedent. Roughly speaking, earlier means that the
average time (Σxi/n) is higher on the branch or else the averages are equal but the deepest one is higher
in the tree.

The previous theory can be modified slightly in order to illustrate precisely why it is that a lexical or-
der for satisfying the antecedent of an existential rule could avoid matching earlier facts and not produce
a proof. The modified theory is listed in Fig. 3.

The first rule is modified to make an even simpler example. Notice the change in the second rule.
Now, each time the second rule applies it extends the geolog tree by introducing a new fact p(Z) for
a new witness Z. If the lexical order of satisfaction illustrated previously is used (where satisfaction is
iterated on the second factor of the antecedent), then a depth-first generation of the tree will produce the
infinite pursuit depicted in the left tree of Fig. 4, even if one allows all of the definite rules to saturate the
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true => p(1), p(2).

p(X), p(Y) => q(X,Y,Z), p(Z). // existential rule

q(2,A,B) => goal.

Figure 3: Modified theory

branch after each application of the existential rule.
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Figure 4: q(2,-,-) unreachable (DF) in left tree, success (QEDF) in right tree

However, if earliest-first satisfaction is used for the existential rule, then we get the simple proof tree
depicted on the right in Fig. 4.

Using a different lexical ordering for the satisfaction of factors is not a general solution to the prob-
lem. For any ordering one can construct an example where needed inferences could be avoided.

Fig. 5 outlines the basic strategy of the QEDF algorithm working on-branch. It expresses how
definite rules saturate the current branch and existential rules are tried in a queued fashion. In addition,
the queued rules are satisfied and applied using earliest-facts-first. The QEDF algoritm is a kind of STG
deduction defined in Section 6 of [4]. QEDF has a particular rule selection function and an earliest-fact-
first regimen for the queued rules.

Certain details are suppressed in the outline. The algorithm builds a geolog tree in a depth-first
fashion starting with the root true 0. The antecedents of a rule are match against the facts on the current
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// assume tree is initialize with true root

boolean progress = true ;

while (progress) {

// D-phase

// saturate with Definite rules

boolean definite = true ;

while (definite) {

definite = false ;

for (r in D) // original rule order

if (apply(r)) {

definite = true ;

break ;

}

}

progress = false ;

// all D rules have applied so try some Q rule

// Q-phase

for (1 .. Q.size) { // original rule order, queued

e = Q.remove() ;

if (applyEF(e)) { // EARLIEST-FIRST satisfaction

progress= true ;

break ;

}

Q.add(e) ;

}

}

Figure 5: QEDF on-branch algorithm outline

branch. A rule whose antecedent matches and whose consequent is not already satisfied on the branch
can then be applied at the current leaf of the branch. When a rule is applied at the leaf, the branch is
extended using the first disjunct of the consequent of the rule, as described in [2], [3] or [4]. Any other
disjuncts (along with the index of the branching point) are pushed onto a choice stack.

If a branch successfully terminates with goal or false, the choice stack is popped and the next choice
is extended at the associated index on the branch, and any remaining choices are again pushed onto the
choice stack. The new current branch now extends from the root to the new facts just extended at the
branching point index.

Since the definite rules are allowed to saturate the current branch, there is no need for specifying
earliest-first satisfaction. But for the queued existential rules, earliest-first satisfaction is assumed in the
algorithm. The previous example demonstrates the need for earliest-first satisfaction for the existential
rules. In Section 2 we argue that queuing the existential rules is sufficient to make the QEDF algorithm
complete for theories without function symbols. In Section 3 we provide more assumptions regarding so
that completeness results for all theories..

1.1 avoiding irrelevant branches

To illustrate irrelevant branching, consider the following simple example.
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true => x.

true => a | b.

a => c | d.

a => goal.

x, b => goal.

The QEDF procedure applied to this example might yield proof pictured in Fig. 6.
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Figure 6: irrelevant case inference at node 2

The inference at node 2 in Fig. 6 is a⇒ c | d, but this inference was irrelevant to the case proof for
the leftmost branch (the first closing branch for the QEDF search). The second branch closing at node 6
need not have been expanded. However, the inference at node 1 was true⇒ a | b, and this inference was
relevant to a case proof closing at node 4. So the preferred proof tree would look like the one in Fig. 7.
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goal6
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c
c

Figure 7: no irrelevant branches

When a branch saturates, the relevancy algorithm is called at the leaf and recursively computes which
inferences on the branch contribute to the deduction of the leaf node: Each branch fact stores the index
on the branch where that fact was inferred, and each such inference stores the antecedent of the inference,
and each such antecedent has factors which store the index on the branch where they were inferred, etc.
(An index of -1 signals above the root of the branch/tree).

The relevancy computation can greatly improve proof search as illustrated in Appendix A.

2 QEDF completeness issues (without function symbols)

We will discuss various versions of the QEDF algorithm, depending upon which rules of our theory are
used in the queue.
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Theorem 1. Suppose that the existential rules are queued. Assume that C is a valid coherent logic theory
without function symbols. Then the QEDF algorithm will build a successfully saturated geolog tree for C.

We delay the proof of Theorem 1 until after a rather detailed discussion of exactly how it is that the
queue is to be used in a proof search. In order to prove Theorem 1 we need to assume that the queue of
existential rules is fairly used along every branch of the search tree. This means that when the search tree
splits each subsequent branch search continues with the state of the queue determined at the branching
point. We will refer to this as the fair-use principle which amounts to an assumption that each branch
sees the queue for its own use, without reordering or alteration caused by the other branches.

true => p(a).

s(X,Y) => goal.

r(X,Y) => p(Y).

p(X) => u(X) | v(X) .

u(X) => s(X,A). // A?

v(X) => r(X,B). // B?

p(X) => s(X,Z). // Z?

Figure 8: Sample theory (for fair-use of queue)
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Figure 9: Infinite tree with unfair queue descends below fact #19 . . .

On a visit to UiB in October 2009, Andrew Polonsky noticed the need for fair-use. Fig. 8 shows a
little coherent theory that QEDF would not prove, if the queue is reset to its original order after finishing
a branch and returning to the branch point to continue the search. Fig. 9 shows part of the infinite
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tree produced when QEDF works on the sample theory without fair-use. The tree descends infinitely
downward towards the right in an apparent fashion. The same search tree is also produced if the queue
is just left as it was when the previous branch saturates. The picture of the proof attempt illustrates how
interaction between the disjunctive rule and the queued existential rules effectively blocks the use of the
last existential rule. Notice that the last rule only gets used at fact u(a)2. (Simple depth-first search of
the original theory without queueing would also not produce a proof.)

Now consider the same theory, but let us employ the the fair-use assumption for the queue. We get
a proof as shown in Fig. 10. If we modify the rule order, as shown in Fig. 11, where the last rule
is moved up in original order, then QEDF produces the proof tree depicted in Fig. 12. The simplest
geolog proof tree is shown in Fig. 13, but this proof cannot be attained using QEDF even if we allow any
rule reordering (why?). If the fifth rule u(X) => s(X,A) is erased from the theory, then the behaviors
described above remain exactly the same.

The example may seem somewhat artificial but the intent is to emphasize the importance of the fair-
use principle governing the queue.
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Figure 10: Proof with fair-use of queue

true => p(a).

s(X,Y) => goal.

r(X,Y) => p(Y).

p(X) => u(X) | v(X) .

p(X) => s(X,Z). // Z? N.B.

u(X) => s(X,A). // A?

v(X) => r(X,B). // B?

Figure 11: Reordered theory
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Figure 12: QEDF proof tree

true0

p(a)1

s(a,sk0)2

goal3

Figure 13: Simplest DF proof

Proof of Theorem 1: Suppose that T is a valid coherent logic theory, so that T has a successfully saturated
complete geolog tree as explained in reference [4](Theorem 2). Suppose that QEDF does not build a
successfully saturated geolog tree, using the fair-use principle for the queue. Either some QEDF search
branch saturates unsuccessfully (and finitely) or else an infinite branch is generated. However, in either
case, there must be at least one existential rule inference that was not used in the QEDF search that was
available in the complete geolog tree, which is not possible since QEDF uses earliest-first rule satisfaction
for queued rules and a fair-use regimen on every branch. 2

3 Extending QEDF for proof completeness with function symbols

Simple examples serve to show that the presence of function symbols in geolog rules could spoil com-
pleteness of QEDF, as formulated up to this point. A rule such as dom(X) => dom(f(X)), since it is a
definite rule, could produce infinitely many consequences if it could apply just once.

If p(t1, . . . , tk) is a geolog predicate, its operator complexity is defined to be the maximum operator
complexity of its terms t1, . . . , tk. The operator complexity of a term is defined to be the maximum depth
of function nesting which occurs in it. For example, the operator complexity of term ((X*Y)*Z) is 2,
and the operator complexity of term f(s(a),t(b)) is 2, whereas the operator complexity of the term
f(a,b) is 1. Constants have term complexity 0. The operator complexity of predicate X>(X*X) is 1.

Henceforth, let us use the term complexity as short for operator (function) complexity. We define
the complexity of a conjunction of geolog predicates to be the maximum complexity of the conjuncts.
Similarly, the complexity of a disjunction of conjunctions is the maximum complexity of any of the
disjuncts. And, finally, we say that a geolog rule is complex provided that the complexity of its antecedent
is strictly less than the complexity of its consequent. Fig. 14 shows some examples.

As a first step toward proof completeness for theories with function symbols, let us assume that
QEDF includes both existential rules and complex rules. Fig.15 shows a theory with two complex rules
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dom(X) => dom(f(X)). // complex

p(g(X)) => p(f(X)). // NOT complex

p(g(X)) => p(f(s(X))). // complex

p(f(X),Y) => p(f(Y),f(X)). // NOT complex

Figure 14: Examples

and Fig.16 illustrates the effect that QEDF would have on a proof search for the theory in Fig. 15 if
we also queue the complex rules. (This theory has no existential rules.) In the tree on the left, we see
the infinite descent caused by repeated application of the second rule. Of course, it would be possible
to reorder the rules in this example to achieve a proof using DF (simple depth first) without queueing,
but in general reordering rules is complicated and problematic. By contrast, the modified QEDF search
easily finds the proof shown in the right tree of Fig. 16.

true => dom(a), dom(b).

dom(X), dom(Y) => dom((X*Y)). // complex

dom(X), dom(Y) => (X*Y) = (Y*X). // complex

(a*b) = (b*a) => goal.

Figure 15: Theory with complex rules
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Figure 16: Compare DF (infinite descent) with QEDF (terminated) searches

However, just including complex rules in the queue will not provide proof completeness, as the
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simple theory in Fig.17 demonstrates and its infinite search tree (partially) displayed in Fig.18. The
problem is that the second rule is not complex, but it can – all by itself – introduce an infinite number of
terms. A reordering of the theory would again solve the problem, but we are looking for a strategy where
reordering (and its problems) are not necessary.

true => p(f(a),b).

p(f(X),Y) => p(f(Y),f(X)). // NOT a complex rule

p(f(X),f(Y) => goal.

Figure 17: Theory with no complex rules

true0

p( f (a),b)1

p( f (b), f (a))2

p( f ( f (a)), f (b))3

p( f ( f (b)), f ( f (a)))4 . . .

Figure 18: Not complex but still infinite . . .

Notice that the rule p(f(X),Y) => p(f(Y),f(X)), although not a complex rule according to the
definition, does involve a cycle (p⇒ p) involving function symbols. We will use this as a basis for
another queueing strategy.

Given a geolog theory, a rule cycle φ1 ;r1 φ2 ;r2 . . . ;rk−1 φk consists of a sequence of rules
r1,r2, . . . ,rk−1 of the theory such that predicate φi occurs in the antecedent of the corresponding rule
ri and φi+1 occurs in the consequent of the rule, for i = 1 . . .k− 1 and φ1 = φk. (The rules themselves
might contain other predicates and may be disjunctive, in which case a corresponding φi would occur in
at least one disjunct.) The cycle is functional provided that at least one of the rules has a function symbol
in the consequent predicate expression, in which case the rule itself is also said to be functional.

Notice that a complex rule having a common predicate in both antecedent and consequent forms a
one-rule functional rule cycle all by itself. Similarly, the rule p(f(X),Y) => p(f(Y),f(X)) forms a
one-rule functional cycle.

Functional rule cycles can be somewhat complicated. Fig.19 shows a theory which has several com-
plicated functional rule cycles.

true => p(a), r(b). %1

p(f(f(X))) => goal. %2

r(X), p(Y) => s(f(X),Y) | p(X). %3

s(f(X),Y) => s(f(Y),f(X)). %4

s(X,Y) => p(Y). %5

Figure 19: Theory having complicated functional rule cycles

The cycles are displayed in Fig.20. Notice that there are no existential rules in this coherent theory.
The notation p;r q means that rule r has predicate p in the antecedent and predicate q in the consequent.
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s ;4 s

p ;3 s ;4 s ;5 p

p ;3 s ;5 p

p ;3 p

Figure 20: Cycles

We want to consider queueing strategies where all functional rule cycles are broken by the queue. By
this we mean that for every possible functional rule cycle, at least one of the functional rules belongs to
the queue. For the example given in Fig.19, this means that Q = [3,4] would break all functional cycles
displayed in Fig,20. Fig.21 displays a counter model generated when either Q = [3,4] or Q = [4]; without
queueing an infinite leftmost branch is generated. However, generally speaking, this strategy of breaking
functional rule cycles is not complete for generating finite counter models. An example would be the
theory {true => a(1)|b. a(X) => a(f(X)).}. Please see the concluding remarks regarding the
generation of countermodels.
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r(b)2

s( f (b),a)3

s( f (a), f (b))4

p( f (b))5

s( f ( f (b)), f (a))6

p( f (a))7

s( f ( f (a)), f ( f (b)))8

p( f ( f (b)))9

goal10

p( f (b))11

����

PPPPP

Figure 21: Q = [3,4] or Q = [4]

There are many possible ways to break functional rule cycles. We assume that existential rules are
queued, so if one encounters a functional cycle having an existential rule, that cycle is (already) broken.

Conjecture. Suppose that the existential rules are queued, and that the queue breaks all functional rule
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cycles for a valid coherent logic theory C. Then the QEDF algorithm will build a successfully saturated
geolog tree for theory C.

A proof of this conjecture would seem to involve essentially the same argument given for Theorem
1: The queueing strategy along with earliest-first satisfaction and application of the queued rules will
eventually successfully saturate every branch, assuming that the coherent theory is valid (i.e., the theory
has a successfully saturated complete geolog tree).

4 Afterwords and Conclusions

The idea regarding the queueing of existential rules was specifically proposed by Marc Bezem. John
Fisher had previously suggested a similar yielding strategy. The need for earliest-first rule applications
was suggested by John Fisher, who found counter examples when it was not used, and Marc Bezem
coined the term earliest-first to describe the required satisfaction regimen. John Fisher and Andrew
Polonsky had many discussions between March 2008 and October 2009 regarding how to extend QEDF
to coherent logic including functions. Those extensions are not yet complete but this technote suggests a
tentative proposal.

We have characterized the QEDF search algorithm and shown that it is complete using strategies that
determine which rules to place in the queue. The acronym ”QEDF” means: Queue certain rules, use
Earliest-first satisfaction for queued rules and Depth First overall search.

A queueing strategy decides which rules of a theory to put into the queue, and there can be many
such strategies. As an alternative to strategies built into the prover, the current Colog allows the following
mechanism as an experimental work-around: If one includes an initial directive rule in a geolog theory
of the form

$do => queue(r1,r2,...).

where rule indices r j ≥ 1, then the loader will put only the specified rules into the queue. Such a $do
rule must appear as the initial (0th) rule in the source file, but Colog will not include this particular rule
in Colog’s rulebase. To force an empty queue, employ the queue nothing rule

$do => queue(0). % that is a ZERO

This adhoc queueing mechanism allows user experiments regarding the effectiveness of queueing strate-
gies.

It needs to be emphasized that, even if there is some finite counter-model for a coherent theory,
a sequential QEDF search as described here might not find it. Consider the simple theory {true =>

a(1)|b. a(X) => a(f(X)).}. The sequential QEDF search will occupy its time descending under
a(1) and will not find the finite counter-model {b}. In order to discover finite counter-models, one needs
specialized search strategies. Appendix B explains on possible strategy: box search.

The LATEX tree pictures in this document were automatically generated by a Colog prover [1].

References
[1] Automated Coherent Logic Project at UiB, http://JohnRFisher.NET/.
[2] John Fisher and Marc Bezem, Skolem Machines and Geometric Logic. In C.B. Jones, Z. Liu and J. Woodcock,

Proc. ICTAC 2007 The 4th International Colloquium on Theoretical Aspects of Computing, Macao SAR, China,
September 26-28, 2007. Springer LNCS vol. 4711, pp. 201-215.

12

http://JohnRFisher.NET/


QEDF J.Fisher

[3] John Fisher and Marc Bezem, Query Completeness of Skolem Machine Computations. In J. Durand-Losé and
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A relevancy example

Negative-normal translations of first-order logic theories into geolog can be effectively optimized using
contrapositive analysis. See Andrew Polonsky’s thesis [6] regarding this topic. However, the negative-
normal translations often lead to geolog theories whose effective proofs can be made much more efficient
using the relevancy algorithm discussed in Sect. 1.1.

To illustrate, consider one of Polonsky’s translations of the TPTP problem COM003+3.p, which is a
FOL formulation for ”The Halting problem is undecidable” [7].
Using a QEDF prover with no relevancy check yields a proof:
#inferences=12310, #facts=21379, #branches=1920, time=159 ms

And, with the relevancy check:
#inferences=2170, #facts=3683, #branches=381, time=26 ms

This means that there were 1920−381 = 1539 irrelevant case branches explored in the proof search
without the relevancy check. (The data reflects two versions of the colog prover running on a PowerMac
12-core machine.)

B box search

Box search is a partially complete strategy for computing proofs and finite counter models in coherent
logic theories using depth-first search. The box terminology refers to a hypothetical box, specified as
a depth times a width, where the depth limit restricts the length or depth of each branch the width
limit restricts the allowed number of branches. Proofs in boxes generally requires QEDF methods, but
extraction of finite counter models only requires a simpler depth-first approach.

The coherent theory in Fig.3 has a proof which fits inside a box of depth ≥ 10 and width ≥ 1,
graphically depicted in Fig.4. This small example suffices to establish the necessity of earliest-first
satisfaction when using box search for a proof of a coherent theory. It is also true that 10x1 is the
smallest box that can contain the QEDF proof.

The coherent theory in Fig.23 has the counter model {q} which is depicted in Fig.24. The branches
at leaves 4 and 9 are actually infinite but they were not extended because of the branch depth bound. This
example illustrates that counter models can be computed in a depth-first fashion, even if earlier branch
are infinite. The smallest box containing this counter model has dimension 2x3. Note that a 2x2 box
would not even allow the first rule to fire.
Lemma 1. If a coherent logic theory has a QEDF proof then some boxed QEDF search finds the proof.

Lemma 2. Suppose that coherent logic theory C has a finite counter model M. Then there is some boxed
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true => dom(good), dom(bad). // not needed for domain closure

tPROGRAM(V1), fPROGRAM(V1) => false.

tHALTS3(V1,V2,V3), fHALTS3(V1,V2,V3) => false.

tHALTS2(V1,V2), fHALTS2(V1,V2) => false.

tOUTPUTS(V1,V2), fOUTPUTS(V1,V2) => false.

tAnd_9(Y,Z,W), fHALTS3(W,Y,Z) => false.

tAnd_13(Y,Z,W), fHALTS3(W,Y,Z) => false.

tAnd_30(Y,Z,W), tHALTS2(Y,Z) => false.

tAnd_17(Y,Z,W) => tOr_11(Y,Z,W), tOr_15(Y,Z,W).

tOr_11(Y,Z,W), tPROGRAM(Y), tHALTS2(Y,Z) =>

tAnd_9(Y,Z,W), tOUTPUTS(W,good).

tOr_24(Y,Z,W), tOUTPUTS(W,good) =>

fHALTS3(W,Y,Z).

tOr_28(Y,Z,W), tOUTPUTS(W,bad) =>

fHALTS3(W,Y,Z).

tAnd_41(W,Y,V) =>

tOr_35(W,V,Y), tOr_39(W,Y,V).

tOr_35(W,V,Y), tPROGRAM(Y), tOUTPUTS(W,good), tHALTS2(V,Y) =>

fHALTS3(W,Y,Y).

tOr_15(Y,Z,W), tPROGRAM(Y) =>

tHALTS2(Y,Z); tAnd_13(Y,Z,W), tOUTPUTS(W,bad).

tOr_32(Y,Z,W) =>

tAnd_26(Y,Z,W), tPROGRAM(Y), tHALTS2(Y,Z), tOr_24(Y,Z,W) ;

tAnd_30(Y,Z,W), tPROGRAM(Y), tOr_28(Y,Z,W).

tOr_39(W,Y,V), tPROGRAM(Y), tOUTPUTS(W,bad) =>

fHALTS3(W,Y,Y); tAnd_37(Y,V), tHALTS2(V,Y), tOUTPUTS(V,bad).

dom(Y), dom(Z), tForall_19(W) =>

tAnd_17(Y,Z,W).

dom(Y), tForall_43(W,V) =>

tAnd_41(W,Y,V).

true =>

dom(W), tPROGRAM(W), tForall_19(W).

tPROGRAM(W) =>

dom(Y), dom(Z), tOr_32(Y,Z,W) ;

dom(V), tPROGRAM(V), tForall_43(W,V).

Figure 22: rhp.20.in

true => p(1) | q | p(2).

p(X) => p(f(X)).

Figure 23: Theory 2 has counter model

DF (or QEDF) search which computes M.

Lemma 1 is obvious: One simply selects a box large enough to contain the known proof and QEDF
will stay inside that box during search. A proof of Lemma 2 uses a similar observation. Any counter
model is an unsuccessfully saturated branch of a geolog tree. If a depth-first search procedure can
process that branch it will eventually saturate it, regardless of whether earliest-first satisfaction is used.
To guarantee that the search reaches that branch one merely has to set a depth bound deep enough to
span the branch and wide enough to include the branch.
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Figure 24: Counter model for Theory 2 at 5

One always obtains a bounding box by only specifying a depth bound. Suppose that the theory has a
rule with maximum splitting s. Then the largest possible width of an s-tree (every node has s descendants
except leaves) at depth d is N = (sd+1−1)/(s−1) and the search tree fits inside this d-by-N box.

Partial completeness is a somewhat meagre result. Are there heuristic methods to predict how deep
and how wide one needs to search in order to produce either a proof or desired counter models?

For a specific example consider the following geolog theory for lattices, supplied by Marc Bezem.
We want to show that not all mathematical lattices are distributive.

% $do => queue(0) . % not needed!

true => m(x,y,u),j(x,z,v),j(y,z,w),m(v,w,r).

true => dom(x), dom(y), dom(u), dom(z), dom(v), dom(w), dom(r).

j(u,z,r) => goal. % DISTRIBUTIVE

dom(X) => le(X,X). % reflexivity

le(X,Y),le(Y,Z) => le(X,Z). % transitivity

m(X,Y,Z) => le(Z,X),le(Z,Y). % Z lower bound of X,Y,

m(X,Y,Z),le(U,X),le(U,Y) => le(U,Z). % even the greatest

j(X,Y,Z) => le(X,Z),le(Y,Z). % Z upper bound of X,Y,

j(X,Y,Z),le(X,U),le(Y,U) => le(Z,U). % even the smallest

le(X,Y) => m(X,Y,X),j(X,Y,Y). % minimum and maximum

m(X,Y,Z) => m(Y,X,Z). % commutativity of m

j(X,Y,Z) => j(Y,X,Z). % commutativity of j

m(X,Y,U),m(U,Z,V),m(Y,Z,W) => m(X,W,V). % associativity of m

j(X,Y,U),j(U,Z,V),j(Y,Z,W) => j(X,W,V). % associativity of j

dom(X) => eq(X,X). % reflexivity of eq

eq(X,Y) => eq(Y,X). % symmetry

eq(X,Y),eq(Y,Z) => eq(X,Z). % transitivity

eq(X,Y) => le(X,Y),le(Y,X). % congruence wrt lt

eq(X,Y),neq(X,Y) => false. % mutual exclusion

dom(X),dom(Y) => eq(X,Y) ; neq(X,Y). % equal or not equal

dom(X),dom(Y) => dom(U),m(X,Y,U). % existence of meets

dom(X),dom(Y) => dom(U),j(X,Y,U). % existence of joins

15
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Using a box of size 500-by-80, Colog finds two finite counter models (red dots, found by inspection
of the tree) depicted in the figure 25.

Figure 25: Boxed models
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