
AutoLog Equality Inference

John Fisher
Prof. Emer. Computer Science

Cal Poly Pomona
jrfisher@cpp.edu

fisher.r.john@gmail.com

BLAST 2018
August 6-10

University of Denver

Topics

Skolem Machines

Reasoning with equality

Modulated coherent logic using AutoLog

AutoLog requirements, design and implementation issues

1– Skolem Machines/Theory

I The following paper (FI) introduced the idea of a Skolem
Machine for computing coherent logic.

John Fisher and Marc Bezem, Skolem Machines, Fundamenta
Informaticae, 91 (1) 2009, pp.79-103

The paper gives conceptual definitions of a Skolem Machine –
as a tape machine analagous to a Turing Machine and as a
tree machine – and shows that it has theoretical
computational universality. The paper itself is linked at the
following website; the paper’s references provide some
background regarding the moniker ”Skolem Machine”.
”Skolem Abstract Machine (SAM)” refers to any of the
several computer implementations.

I http://skolemmachines.org

2– Skolem Machines/Programming Code

A colog rule (Skolem machine code instruction) has the general
form . . .

A1, A2, . . . , Am => C1 | C2 | . . . | Cn.

The antecedent of the rule is a conjunction of literals Ai , the
consequent of the rule is a disjunction of Ci , each of which is itself
a conjunction of literals (m, n ≥ 1).

3– Skolem Machines/Code Example with Proof Tree
Object

The colog program (colog14)

true => domain(X), p(X).

p(X) => q(X) | r(X) | domain(Y), s(X,Y).

domain(X) => u(X).

u(X), q(X) => false.

r(X) => goal.

s(X,Y) => goal.

An associated FOCL, first-order coherent logic, theory

> → ∃x p(x).
∀x(p(x)→ q(x) ∨ r(x) ∨ ∃y s(x , y)).
∀x (u(x) ∧ q(x)→ ⊥).
−−−−−−−−−−−−−−−
∃x r(x) ∨ ∃x , y s(x , y) ?

true0

domain(sk0)1

p(sk0)2

u(sk0)3

q(sk0)4

false5

r(sk0)6

goal7

domain(sk1)8

s(sk0, sk1)9

u(sk1)10

goal11

����
PPP

4– . . . extracted proof

file:/SkolemMachines.ORG/reports/BLAST18/automod/1.txt

LEAF 5.

@4, rule4: u(sk0), q(sk0) => false

@3, rule2: p(sk0) => q(sk0) | r(sk0) | domain(sk1), s(sk0,sk1)

@2, rule3: domain(sk0) => u(sk0)

@0, rule1: true => domain(sk0), p(sk0)

LEAF 7.

@6, rule5: r(sk0) => goal

@3, rule2: p(sk0) => q(sk0) | r(sk0) | domain(sk1), s(sk0,sk1)

@2, rule3: domain(sk0) => u(sk0)

@0, rule1: true => domain(sk0), p(sk0)

LEAF 11.

@10, rule6: s(sk0,sk1) => goal

@3, rule2: p(sk0) => q(sk0) | r(sk0) | domain(sk1), s(sk0,sk1)

@2, rule3: domain(sk0) => u(sk0)

@0, rule1: true => domain(sk0), p(sk0)

5– Skolem Machines – difficult problems, e.g.

A coherent logic formulation of the TPTP problem COM003+3.p
(The halting problem is undecidable) was given by A. Polonsky
using his translator from FOL form to various colog forms*.
Various translations could all be quickly solved by colog14 (1-3
ms). The following screenshot shows a very branchy (but speedy)
proof tree object (281 proof cases).

Domain guarded solutions (my experiments) were less branchy, for
example (10 cases) . . .

*These translations did NOT employ intuitionistic transforms.
(More on that later.)

6– Skolem Machine – constructive logic

Coherent implications form a Glivenko class: If a coherent
implication is derivable from a coherent theory using classical logic,
then it is derivable intuitionistically.

Any consequence provable using Skolem Machine computations for
a colog program is a provable consequence of the program using
intuitionistic logic (where consequence here is defined in the FI
theory article – a DNF derived using a tree computation).

(* Statements on this slide may require qualification for AutoLog.
*)

7– Reasoning with equality – example (colog14)

Modulation inflation problem for theorem provers . . .

Problem: Show that left and right inverses in a monoid are equal.

% data

true => dom(e),

dom(x), dom(y), dom(z), % hypothesis

(y*x)=e, % left inverse for x

(x*z)=e. % right inverse for x

% conjecture

y=z => goal.

% closure for * C

dom(X), dom(Y) => dom((X*Y)).

% associativity of * C

dom(X), dom(Y), dom(Z) => ((X*Y)*Z)=(X*(Y*Z)).

% e is identity for * C

dom(X) => (X*e)=X, (e*X)=X.

% = rules

dom(X) => X=X.

X=Y => Y=X.

X=Y, Y=Z => X=Z.

% substitutivity for = C

A=B, C=D => (A*C)=(B*D).

% C: complex rule

8– monoid example (cont.)

Using a cut strategy (≤ 2 applications of complex rule), one gets:
Proof cut=2 inferences=1384 facts=1407 time=22ms

subsumed=18867

Without cut, one gets:

Proof inferences=5538 facts=5599 time=244 ms

subsumed=202135

@1406, rule1: y=z => goal

@1405, rule7: z=y => y=z

@1404, rule8: z=((y*x)*z), ((y*x)*z)=y => z=y

@1341, rule7: y=((y*x)*z) => ((y*x)*z)=y

@1340, rule8: y=(y*(x*z)), (y*(x*z))=((y*x)*z) => y=((y*x)*z)

@1319, rule7: ((y*x)*z)=(y*(x*z)) => (y*(x*z))=((y*x)*z)

@1318, rule4: dom(y), dom(x), dom(z) => ((y*x)*z)=(y*(x*z))

@650, rule8: y=(y*e), (y*e)=(y*(x*z)) => y=(y*(x*z))

@649, rule7: (y*(x*z))=(y*e) => (y*e)=(y*(x*z))

@648, rule9: y=y, (x*z)=e => (y*(x*z))=(y*e)

@93, rule8: z=(e*z), (e*z)=((y*x)*z) => z=((y*x)*z)

@92, rule7: ((y*x)*z)=(e*z) => (e*z)=((y*x)*z)

@91, rule9: (y*x)=e, z=z => ((y*x)*z)=(e*z)

@87, rule7: (e*z)=z => z=(e*z)

@84, rule5: dom(z) => (z*e)=z, (e*z)=z

@66, rule7: (y*e)=y => y=(y*e)

@64, rule5: dom(y) => (y*e)=y, (e*y)=y

@9, rule6: dom(z) => z=z

@8, rule6: dom(y) => y=y

@0, rule2: true => dom(e), dom(x), dom(y), dom(z), (y*x)=e, (x*z)=e

9– Complexity Cut mechanism

The current complexity cut mechanism, which is rule based, can
limit (cut) the number of applications of a rule whose consequent
has larger complexity than that of its antecedent. Complexity is
defined in terms of the number of operators) is a term.

Rules which are not complex are NOT restricted by a cut wizard;
these rules do not introduce more complicated facts onto the
search branch. Only rules which introduce more complicated
search facts are restricted.

Substitution of equals (modulation) involves the same complexity
issue.

10– Complexity Cut mechanism (cont.)

The complexity cut mechanism is akin to Prolog’s cut mechanism
(which also cuts off rule alternatives).

The Skolem Machine complexity cut mechanism is sound.

Also, any problem which proves can be proved using some
complexity cut. (Pick a cut that would allow all of the inferences
required for the proof in hand.)

11– Modulated coherent logic using AutoLog

A new logic programming language (and theorem prover) design is
currently being developed, called Autolog. Autolog employs a
Skolem Machine for extended coherent logic computations. We
plan to augment Autolog with appropriate renditions of equality
modulation in order to enable Prover9-like capabilities for Autolog.

Example A involves the use of substructural logic equalities
involving constructive negation as lemmas to modulate proof terms
– metalogic. Lemmas for specific logics amount to a kind of logical
anti-cut mechanism: Algebraic lemmas provable for specific logics
are used as modulators for various coherent theories. (A logical cut
of the lemmas would amount to a combined theory proving the
lemmas and the main theorems. Auto-provers prefer cuts
(divide-and-conquer tactics), logicians require cut eliminations.)

12– AutoLog example A: modulated proof terms

Proof terms can be algebraic expressions modulated (substituted)
by equality lemmas (which could be weighted towards a preferred
subsitution). The ”bigger plan” here is to devise mechanisms for
”universal logic computations”, implemented using a Skolem
Machine. This example illustrates how we might incorporate
constructive negation into our logic computations.

13– AutoLog, monoid problem redux

It is possible to reformulate the monoid problem on slide 7 so that
the identities are used at modulators:

(X*Y)*Z=X*(Y*Z).

X*e=X.

e*X=X.

The reflexivity, symmetry, transitivity and substitutivity can be
internalized or left as coherent logic rules. If C is a bound
equational proof literal and E is an equation (intended as a
modulator), then any ”paramodulant” of C by E can be achieved
by a ”demodulation” (i.e, a substitution). This observation
simplifies the modulation requirements somewhat; however, some
other details are still open.

The complexity cut mechanism should still work in a similar
manner for the new formulations of equality modulation. Other
efficiencies are mentioned in the last section.

14– AutoLog example B: more metalogic

15– AutoLog example C: ∀, ∃ metalogic

16– AutoLog example D: residuated modulators

An equality modulator A = B is potentially applicable in a
symmetric fashion, even though a search stategy might prefer a
one-way substitution (See, e.g. slide 12). A residuated modulator
A→ B requires a proof term (branch fact) match of A replaced by
the corresponding instance of B (and not vice-versa). Here are
some one-way constructive negation modulators, for example:

Note that a form A ≤ A ∨ B would not make sense without context–see slide 14.
The use of rules is preferred to one-side modulation.

Are there complete sets of rules and modulators for constructive
negation (Heyting algebra)?

17- Unified Logic Computation: Model=Proof

The Skolem machine builds models or proofs using the same logic
computations.

Model=Proof∧
tree models proof trees∨

logic computation theory ≈ procedural semantics

via
Equality Modulated Algebraic Logic

18- Similarity with Kripke semantics – a

These meta-axioms can be considered as specifying how to make
residuated tree models . . .

Consider the modulator as a definition.
PROJECT: Describe a cogent relationship between those tree
models and Kripke semantics. How would tree branches
correspond to preordered Kripke frames? (next slide)
(Note that tree branch sets contain grounded propositions!)

19- Similarity with Kripke semantics – b

clipped from . . .

https://en.wikipedia.org/wiki/Kripke_semantics#Semantics_

of_intuitionistic_logic

https://en.wikipedia.org/wiki/Kripke_semantics#Semantics_of_intuitionistic_logic
https://en.wikipedia.org/wiki/Kripke_semantics#Semantics_of_intuitionistic_logic

20– AutoLog USM challenge

Is there an AutoLog formulation for a Universal Skolem Machine?
Using algebraic and metalogic formulations – machine simulating
self?

We know that the SM is a universal computer, using the adequacy
condition in Marvin Minsky’s famous paper. (See §5 of FI.)

21- AutoLog requirements, design and implementation
issues

Most of the new design requirements lead to implementation
requirements that force new efficiencies on the machine
computations. That aspect of AutoLog is a kind of compiler
optimization task: Logic code must be translated and optimized
for logic machine internal code computation.

I 1 impredicativity vs indexicality (e.g. slide 14)

I 2 tabled logic, term indexing

I 3 auto-confluent modulation reasoning (?)

I 4 ADT (algebraic data type) reasoning

I 5 staged rule application

I 6 concurrent staged rule applications

I 7 modules or lemmas

I 8 proof farms (distributed computational logic)

http://skolemmachines.org/autolog/README.html

22- ...

Thank You

23- afterwords . . .

Here is a link for a hint about the PROJECT on slide 18, re Kripke
semantics:
http://SkolemMachines.org/reports/BLAST18/kripke.pdf

http://SkolemMachines.org/reports/BLAST18/kripke.pdf

	Skolem Machines
	Reasoning with equality
	Modulated coherent logic using AutoLog
	AutoLog requirements, design and implementation issues

