
B
R

IC
S

LS
-98-2

C
.B

utz:
R

egular
C

ategories
and

R
egular

Logic

BRICS
Basic Research in Computer Science

Regular Categories and Regular Logic

Carsten Butz

BRICS Lecture Series LS-98-2

ISSN 1395-2048 October 1998

Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Lecture Series publica-
tions. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory LS/98/2/

Regular Categories and Regular Logic

Carsten Butz

Carsten Butz

butz@brics.dk

BRICS1

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

October 1998

1Basic Research In Computer Science,
Centre of the Danish National Research Foundation.

Preface

Notes handed out to students attending the course on Category Theory at the
Department of Computer Science in Aarhus, Spring 1998. These notes were
supposed to give more detailed information about the relationship between
regular categories and regular logic than is contained in Jaap van Oosten’s
script on category theory (BRICS Lectures Series LS-95-1). Regular logic is
there called coherent logic. I would like to thank Jaap van Oosten for some
comments on these notes.

v

vi

Contents

Preface v

1 Prologue 1

2 Regular Categories 2

3 Regular Logic 11

4 A Sound Calculus 18

5 The Internal Logic of a Regular Category 22

6 The Generic Model of a Regular Theory 25

7 Epilogue 31

vii

viii

Regular Categories and Regular Logic

1 Prologue

In these notes we describe in detail the relation between regular categories
and regular logic, the latter being the fragment of first order logic that can
express statements of the form ∀x̄(ϕ(x̄)→ ψ(x̄)), where ϕ and ψ are built up
using atomic formulae, the truth constant >, binary meets ∧ and existential
quantification ∃. A regular category is a category with all finite limits in
which every arrow can be factored as a regular epimorphism followed by a
monomorphism. Intuitively, the object arising in this factorisation is the
image of the map. A regular functor between such categories is a functor
that preserves all this structure. This gives the category RegCat of small
regular categories.

In such a regular category we can interpret signatures and extend such
interpretations to all regular formulae, i.e., to those formulae built up using
atomic formulae, binary meets and existential quantification. Then an inter-
pretation is a model of a sequent ∀x̄(ϕ(x̄) → ψ(x̄)) if the interpretation of
ϕ(x̄) factors through the interpretation of ψ(x̄) (necessarily as a monomor-
phism). With the appropriate notion of maps between models this gives for
each theory T (i.e., for each set of sequents) and for each regular category
C a category Mod(T, C) of models of T in C. This construction is natural in
C because a regular functor preserves models, so that we have a functor, for
each theory T ,

Mod(T,−): RegCat→ Cat,

from small regular categories to small categories.

An important point is that this functor is representable (in a weak sense)
by a small regular category R(T), that is, there are equivalences such that
for each functor F : C → D the diagram

Mod(T, C)
Mod(T,F)

��

∼= // RegCat(R(T), C)
F◦(−)

��
Mod(T,D) ∼=

// RegCat(R(T),D)

commutes. The representing object is constructed with the help of a small
calculus for regular logic, sound for interpretations in regular categories. In
particular, applying the above equivalence to the identity functor, this rep-
resenting category contains a generic model U of T , generic in the sense that

1

Regular Categories and Regular Logic

a sequent is satisfied by U if and only if it is derivable from T in the calcu-
lus. Hence we have a completeness theorem for regular logic with respect to
regular categories.2

Our treatment of the material is fairly detailed, but we hope that the
reader does not get bored. We included all those minor facts, almost trivial,
that one really has to check. For the logician among the readers we should
stress that the results of this note are an example of the relationship between
logic and category theory. They present the kind of results one can get.

2 Regular Categories

Let C be a category, X an object of C. A subobject of X is an equivalence
class of monomorphisms α:A ↪→ X where α ∼ β if A and B are isomorphic

over X, i.e., there should be an isomorphism i:A
∼=→ B so that

X

A
3�

FF

∼=
// B
+ K

XX111111

commutes. We write A� X to indicate that A is a subobject of X, leaving
α often unspecified although it is an important part of the data. Sub(X)
denotes the class of subobjects of X, being partially ordered by A ≤ B if
and only if α:A ↪→ X factors through β:B ↪→ X. This partially ordered
class has a largest element, represented by the identity map idX .

Definition 2.1 We say that C is well-powered if Sub(X) is a set for all
objects X of C.

Suppose now that C has pullbacks. Then for all X the class Sub(X) is a

meet-semilattice, the meet of A
α� X and B

β
� X being represented by the

composition A×X B ↪→ X arising in the pullback square

A×X B � � //
� _

��

B� _

β

��
A

� �

α
// X

2Of course, regular logic is complete with respect to models in the regular category of
sets, thanks to Gödel’s completeness theorem for first-order logic. But similar results as
in this note hold for other pairs of logics/categories, where one can not appeal to known
results of logic.

2

2. Regular Categories

Moreover, for each arrow f :X → Y in C, pullback along f induces a meet-
preserving map

f−1: Sub(Y)→ Sub(X), (B� Y) 7→ (f−1B� X).

(Sometimes one writes f ∗ instead of f−1.) The object f−1B is called the
inverse image of B along f . If C is well-powered the resulting functor
Sub(−): Cop → Set (or the functor Sub(−): Cop → ∧-SLat to the category
of meet-semilattices) is called the subobject functor .

Definition 2.2 A category C is called regular3 if it has all finite limits, if co-
equalisers of kernel pairs exist, and if regular epimorphisms are stable under
pullbacks.

Here the kernel pair (p1, p2) of an arrow f :X → Y consists of the two
projections X ×Y X ⇒ X.

The important point to note about regular categories is that any ar-
row can be factored as a regular epimorphism followed by a monomorphism.
Moreover, this factorisation is unique (up to isomorphism). Before prov-
ing this we collect some minor facts about regular epimorphisms in such a
category:

Lemma 2.3 Let C be a regular category.
(i) Any regular epimorphism is the coequaliser of its kernel pair.

(ii) A regular epimorphism which is mono is an isomorphism.
(iii) The composite of two regular epimorphisms is again a regular epimor-

phism.
(iv) If f :X → Y and g:Y → Z are arrows such that both g ◦ f and f are

regular epimorphisms, so is g.

Proof. For the first part take some coequaliser A
f //
g

//B
e // //E , construct

the kernel pair of e to get

A
〈f,g〉 // B ×E B

π2 //
π1

// B
e // // E

3We note that the literature knows many different ‘definitions’ of regular categories.
But they all give the same class of categories provided the request for finite limits is
included.

3

Regular Categories and Regular Logic

and denote by e′:B � E′ the coequaliser of π1 and π2. Since eπ1 = eπ2 there
is a unique map h:E′ → E satisfying he′ = e. Since e′ coequalises π1 and π2

it satisfies e′f = e′g, so that we find a map h−1:E → E′ such that h−1e = e′.
Clearly, h and h−1 are inverses of each other.

For the second part note that since e:B � E is the coequaliser of its
kernel pair π1 and π2 and since e is mono that π1 = π2:B ×E B ⇒ B.
Therefore, the identity map idB coequalises them and e is in fact a split
monomorphism and an epimorphism, hence an isomorphism.

Now let B
e� E

e′� E ′ be two regular epimorphisms. We first look at the
pullback diagram

B ×E′ B //

����

E ×E′ B //

��

B

e
����

B ×E′ E // //

����

E ×E′ E //

��

E

e′
����

B e
// // E

e′
// // E ′

to see that the canonical map e×E′ e:B×E′ B → E ×E′ E is epi, as it is the
composite of two (regular) epimorphisms. Next we use the diagram

B ×E B
q // B ×E′ B

e×E′e // //

q1

��
q2

��

E ×E′ E
p1

��
p2

��
B e

// // E
e′

// // E ′

to show that e′e is the coequaliser of the two parallel arrows (projections) q1

and q2. Note that p1 ◦ (e ×E′ e) = eq1 and p2 ◦ (e ×E′ e) = eq2. Moreover,
(p1, p2) is the kernel pair of e′ and (q1q, q2q) is the kernel pair of e.

If g:B → G is such that gq1 = gq2 then g coequalises the kernel pair of e,
so we find a unique g′:E → G satisfying g′e = g. Using that e ×E′ e is epi
and commutativity of the diagram above we see that g′p1 = g′p2, so that
there is a unique arrow g′′:E′ → G that satisfies g′ = g′′e′. Thus, e′e is the
coequaliser of q1 and q2.

Finally, let f :X → Y and g:Y → Z be two arrows such that both gf and
f are regular epimorphisms. Write q1, q2:X ×Z X ⇒ X for the kernel pair
of gf and p1, p2:Y ×Z Y ⇒ Y for the kernel pair of g. (Note that, as above,

4

2. Regular Categories

q1 = p1 ◦ (f ×Z f) and similar for the second projections.) If h:Y → H is
a map such that hp1 = hp2 then hf coequalises q1 and q2, so that we find a
unique h̄:Z → H satisfying h̄gf = hf . Since f is epi, h̄g = h. 2

Proposition 2.4 In a regular category C each arrow can be factored as a
regular epimorphism followed by a monomorphism. Moreover, for each com-
mutative diagram

X ′
f //

e

��

Y

m

��
X ′ g

// Y ′

with e a regular epimorphism and m a monomorphism there exists a (unique)
diagonal d:X ′ → Y making both triangles commute. In particular, the regular
epi–mono factorisation is unique up to isomorphism.

Proof. For the factorisation let f :X → Y be arbitrary and e:X � E the
coequaliser of the kernel pair p1, p2:X ×Y X ⇒ X of f . In particular, there
exists a unique arrow m:E → Y such that f = m ◦ e. We have to show that
m is mono.

Let q1, q2:E ×Y E ⇒ E be the kernel pair of m. Since m(ep1) = m(ep2)
there exists a unique arrow b:X ×Y X → E ×Y E such that q1b = ep1 and
q2b = ep2 as in

X ×Y X
p1 //
p2

//

b &&MMMMMMMMMM X
f //

e

�� ��???????? Y

E ×Y E
q1 //
q2

// E

m

??��������

As in the proof of Lemma 2.3 we observe that b is an epimorphism. But
then q1 = q2 because q1b = ep1 = ep2 = q2b, which implies that m is a
monomorphism: Indeed, for two parallel arrows g, h:Z → E with mh = mg
the arrow 〈g, h〉:Z → E ×Y E exists, and g = q1〈g, h〉 = q2〈g, h〉 = h.

To show the second part consider the kernel pair (p1, p2) of e. Since
mfp1 = f ′ep1 = f ′ep2 = mfp2 and m is mono we deduce fp1 = fp2, and
there exists a unique map d:X ′ → Y such that f = de. Then f ′e = mf =
mde and f ′ = md because e is epi. 2

5

Regular Categories and Regular Logic

Let f :X → Y be an arrow in a regular category. The monomorphism
m:E ↪→ Y arising in the factorisation of f is called the (direct) image of f ,
denoted Im(f). Sometimes we also say that E is the image of X under f .
The image is only unique up to isomorphism, but determines a unique sub-
object of Y which is denoted ∃f (X). We often confuse Im(f), ∃f (X) and the
object E.

More generally, for a subobject A
α� X of X we define

∃f (A) := Im(f ◦ α),

which gives a well-defined map ∃f : Sub(X)→ Sub(Y).

Lemma 2.5 Let f :X → Y be an arrow.
(i) The map ∃f is monotone and left-adjoint to the pullback functor f−1,

that is, ∃f : Sub(X)� Sub(Y): f−1, ∃f a f−1.
(ii) If g:Y → Z is another arrow then ∃g ◦ ∃f = ∃g◦f : Sub(X)→ Sub(Z).

Proof. For monotonicity of ∃f take B′ ≤ B in Sub(X). We factorise first
B → Y and then B′ → ∃fB (!) to get the diagram

X
f // Y

B
?�

β

OO

// // ∃fB
?�

OO

B′ // //?�

OO

J*

β′

GG

Z .
?�

OO

The factorisation B′ � Z ↪→ Y is a regular epi–mono factorisation of f ◦ β ′,
so Z represents ∃fB′ and ∃fB′ ≤ ∃fB.

For adjointness we take subobjects A
α� X and B

β
� Y and look at the

solid arrows in

X
f // Y

f−1B
?�

OO

// B
?�

β

OO

A
3�

α

FF����������������
// //

=={
{

{
{

{
∃fA

>>}
}

}
}3�

FF

6

2. Regular Categories

If ∃fA ≤ B then the dashed map ∃fA → B exists and the outer square
commutes, hence the dashed arrow A→ f−1B exists (being a monomorphism
since α is), and A ≤ f−1B. Conversely, if A ≤ f−1B we can just factorise
the map A → B to get the image of A under f , in particular, this image
then factors through B.

Finally, the identity ∃g ◦ ∃f = ∃g◦f holds since it just states how left-
adjoints compose. 2

As a consequence we observe that f−1 preserves all meets which exist in
Sub(Y). Next we prove the so-called Frobenius identity :

Lemma 2.6 Let C be a regular category, f :X → Y an arrow and A
α� X,

B
β
� Y two subobjects. Then ∃f(A ∧ f−1B) = ∃fA ∧ B, as subobjects of Y .

Proof. Note first that A∧ f−1B is obtained as the pullback of B ↪→ Y along
f ◦ α, which factors as A� ∃fA ↪→ Y as in the top part of

X // // ∃fX � � // Y

A
(�

α
55kkkkkkkkkk // // ∃fA

(�
55kkkkkkkk

A ∧ f−1B
?�

OO

// ∃fA ∧ B
?�

OO

� � // B .
?�

β

OO

Thus, pulling back B we first get ∃fA ∧ B (as a subobject of ∃fA and Y),
and then A∧f−1B. The map A∧f−1B → ∃fA∧B is a regular epimorphism,
since it is the pullback of one, so A ∧ f−1B � ∃fA ∧ B ↪→ Y is the regular

epi–mono factorisation of A ∧ f−1B ↪→ X
f→ Y and we get the equality of

the lemma. 2

Next we show how we can code an arrow f :X → Y by its graph, a
subobject of X × Y . We define

graph(f)� X × Y

as the image of the map 〈idX , f〉:X → X×Y (observe that the canonical map
X → graph(f) is an isomorphism). Let πX and πY denote the projections
from X × Y to X and Y respectively.

7

Regular Categories and Regular Logic

Lemma 2.7 Let A
α� X be a subobject of X. Then ∃fA = ∃πY (π−1

X A ∧
graph(f)).

Logically, the lemma says that, for A a predicate of X and f :X → Y ,
the interpretation of ∃fA is {y | ∃x(f(x) = y ∧ A(x))}.

Proof. Again this is a matter of looking at the right diagram, where all
squares are pullback squares, constructed from right to left (we end up with
the monomorphism A ↪→ X since the composite horizontal map X → X is
the identity):

Y

X

f

33gggggggggggggggggggggggggggggggg // // graph(f) � � // X × Y πX //

πY

OO

X

A
?�

α

OO

// // π−1
X A ∧ graph(f)

?�

OO

� � // π−1
X A
?�

OO

// A .
?�

α

OO

The map A → π−1
X A ∧ graph(f) is a regular epimorphism, so we get the

image factorisation of f ◦ α as the image factorisation of the map π−1
X A ∧

graph(f)→ X × Y → Y composed with A� π−1
X A∧ graph(f) (here we use

Lemma 2.3(iii)). In particular, the identity of the lemma holds. 2

We note that we can recover f from its graph: A subobject R
r� X × Y

may be seen as a relation between ‘elements’ of X and Y . Call R total if
∃πYR = X (which means intuitively that the set of all x such that there
exists some y with xRy equals X); and functional if the canonical arrow
R ×X R → X × Y × Y factors through the inclusion idX × ∆Y :X × Y →
X × Y × Y . (Since R ×X R represents the ‘object’ of triples (x, y1, y2) such
that xRy1 and xRy2 this means intuitively that from xRy1 and xRy2 one
should be able to deduce y1 = y2.)

The graph of an arrow f in C is a total and functional relation on X × Y
(Exercise E.3).

Lemma 2.8 For each total and functional relation R
r� X × Y there exists

a unique arrow f :X → Y in C such that R = graph(f).

8

2. Regular Categories

Proof. Since R is total the composite R
r
↪→ X × Y πX→ X is a regular epimor-

phism which is the coequaliser of its kernel pair (p1, p2) constructed in

R ×X R //
� _

��

p2

''

p1

��

''OOOOOO Y ×X R //

��

R� _

r

��

P = X × Y
idX×∆Y

((QQQQQQQ

R×X Y � � //

��

X × Y × Y
π1,3 //

π1,2

��

X × Y
πX

��
πY

��5555555555555555

R
� �

r
// X × Y πX

//

πY
**VVVVVVVVVVVVVVVVVVVVV X

Y .

(The dashed factorisation exists since R is functional.) The two ways from
P to Y are just the projection onto the second coordinate, hence we deduce
that πY ◦ r coequalises p1 and p2 so that there exists a unique f :X → Y
satisfying fπXr = πY r.

To show that R = graph(f) we look at the following diagram where the
right part is just the definition of graph(f):

Y

R
� �

r
//

$$ $$
X × Y πX

// X // //

〈idX ,f〉
&&

f
44iiiiiiiiiiiiiiiiiiiiiiii

UUUUUUUUUUUUUUUUUUUUUUUU

UUUUUUUUUUUUUUUUUUUUUUUU graph(f) � � // X × Y

πY

OO

πX

��
X

The composite R ↪→ X×Y → X is a regular epimorphism and we can obtain
graph(f) as well as the regular epi–mono factorisation of the composite R→
X × Y . But this map is the unique such map when composed with πX gives
idXπXr and when composed with πY gives πY ◦〈idX , f〉◦πX◦r = fπXr = πY r!
So this map has to be the mono r:R ↪→ X × Y , the image of which is R. 2

Another important fact one has to know is the behaviour of images of
maps that are related by a pullback square:

9

Regular Categories and Regular Logic

Lemma 2.9 Let

Z ×Y X
g′ //

f ′

��

X

f

��
Z g

// Y

be a pullback square. Then ∃g′f ′−1 = f−1∃g: Sub(Z)→ Sub(X).

Proof. For a subobject A
α� Z we look at the following cube, where the front

is our pullback square, the left side is a pullback square obtained from pulling
back A along f ′, the bottom fact is the image factorisations of A→ Y , while
the right side and the back side are again two pullback squares:

A×Y X

��

// //
� o

��?????????
f−1∃gA

��

� o

��?????????

Z ×Y X

f ′

��

// X

f

��

A // //
� o

��??????????
∃gA � o

��?????????

Z g
// Y

Since A ×Y X = f ′−1(A) the factorisation A ×Y X � f−1∃gA ↪→ X is the
regular epi–mono factorisation of f ′−1(A) ↪→ Z ×Y X → X, so we get the
equality as stated in the lemma. 2

Call a functor F : C → D between regular categories regular if it preserves
finite limits and coequalisers of kernel pairs (the latter makes sense since F
preserves finite limits). We denote by RegCat the category with objects the
small regular categories and arrows regular functors. Since in a category
with pullbacks an arrow f is mono if and only if

• id //

id
��

•
f

��•
f

// •

10

3. Regular Logic

is a pullback square, any regular functor F : C → D induces, for each object
X of C, a map FX (or just F)

F : SubC(X)→ SubD(F (X))

which preserves finite meets and the top element. In particular, it is mono-
tone. Moreover, if f :X → Y and if B� Y then F (f−1B) = F (f)−1(F (B))
because F preserves pullbacks. One way to sum this up is to say that F
induces a natural transformation

SubC(−)⇒ SubD(F (−)): Cop ⇒ Set.

In addition, F preserves by definition as well images: If A
α
↪→ X

f→ Y is given
then F (∃fA) = ∃F (f)(F (A)). For this just remember that ∃fA was defined
as the coequaliser of the kernel pair of f ◦ α:A→ Y . For the record:

Lemma 2.10 A regular functor between regular categories preserves both
inverse images and (direct) images. 2

3 Regular Logic

Regular logic is roughly speaking the ∃–∧–fragment of many-sorted first-
order logic. Although we do not prove this here we mention that there is no
difference between the intuitionistic and the classical version.

A (typed) signature S consists of a set of basic sorts (basic types) sortS =
{X1, X2, . . .}, and of sets constS, functS and relS of typed constants, function
and relation symbols. We write expressions like

c:X, f :X1 × · · · ×Xn → Y, R� X1 × · · · ×Xm,

to indicate the typing of these symbols. (Note that X1 × · · · ×Xn is just a
formal expression that should support our intuition!) We usually abbreviate
X1 × · · · ×Xn as X̄.

Given a signature S, the language L(S) (or better Lrωω(S), where the
superscript r stands for regular)4 consists of the signature S, for each sort X

4There are some conventions on how to denote logics. Here the first subscript ω stands
for the fact that there are only finite conjunctions, i.e., conjunctions over sets of cardinality
less then ω. The second ω stands for the fact that there are only finite blocks of quantifiers
(in our case, of existential quantifiers).

11

Regular Categories and Regular Logic

a countable list of variables x (we write x:X to indicate that x is a variable
of type X, as well, x̄: X̄ has its obvious meaning), and the sets of (typed)
terms and formulae defined as follows:

(T1) x is a term of type X, provided that x is a variable of type X.
(T2) Similarly, a constant c is a term of type X if c:X.
(T3) If t1, . . . , tn are terms of type X1, . . . , Xn respectively and if f :X1×· · ·×

Xn → Y is a function symbol then f(t1, . . . , tn) is a term of type Y .
(F1) If t1 and t2 are terms of type X then t1 = t2 (or better: t1 =X t2) is a

formula.
(F2) If t1, . . . , tm are terms of type X1, . . . , Xm respectively, and if R �

X1 × · · · ×Xm is a relation symbol, then R(t1, . . . , tm) is a formula.
(F3) > (the logical constant ‘true’) is a formula.
(F4) If ϕ and ψ are formulae so are ϕ ∧ ψ and ∃xϕ (x a variable of some

type).

For a formula ϕ, FV(ϕ) denotes the the set of free variables of ϕ. A theory T
(formulated in L(S)) is a set of sequents

ϕ⇒ ψ

where ϕ and ψ are (regular) formulae. The latter is shorthanded to ψ if
ϕ ≡ >.

Below we will define interpretations M of a language L(S) in a regular
category. Then M will be a model of ϕ ⇒ ψ if {x̄ | ϕ}(M) ≤ {x̄ | ψ}(M),

as subobjects of X
(M)
1 × · · · × X

(M)
n (and x̄ the set of variables occurring

free in either ϕ or ψ). In Set this is equivalent to say that M is a model of
∀x̄(ϕ→ ψ), and indeed, this is the intuition one should have about a sequent
ϕ⇒ ψ.

Remark 3.1 In what follows we will always assume that a regular category
comes equipped with a choice of a terminal object, of binary products and of
equalisers. Using bracketing from left to right, a sequence C1 × · · ·Cn then
means (· · · ((C1×C2)×C2)× · · ·)×Cn. Of course, to make such choices we
have to use the Axiom of Choice.

To be precise, an interpretation M of L(S) in a regular category C consists
of

— an object X(M) of C for each basic sort X ∈ sortS;

12

3. Regular Logic

— an arrow c(M): 1C → X(M) for each constant c:X;
— an arrow f (M):X

(M)
1 × · · · × X

(M)
n → Y (M) for each function symbol

f :X1 × · · · ×Xn → Y in functS;

— and a subobject R(M) � X
(M)
1 × · · · × X(M)

n for each relation symbol
R� X1 × · · · ×Xn.

We write X̄(M) for the product X
(M)
1 ×· · ·×X(M)

n . This interpretation of the
signature is extended to all terms and all formulae. To a term t of type Y
with free variables among z̄: Z̄ we assign an arrow t(z̄)(M): Z̄(M) → Y (M), to
a formula ϕ with free variables among z̄: Z̄ we assign a subobject {z̄ | ϕ}(M)

of Z̄(M) as follows:

(T1) If x is a variable of type X then x(z̄)(M) is the composite Z̄(M) π→
X(M) id→ X(M). (Here we are very specific: x:X is interpreted by
the identity X(M) → X(M), the projection π is needed to handle the
‘dummy’ variables occurring in z̄. Note that, by assumption, the free
variables of the term x (i.e., the variable x) are contained in the list z̄.)

(T2) If c:X is a constant then c(z̄)(M) is the composite Z̄(M) → 1
c(M)

→ X(M).
(T3) Let f :X1×· · ·×Xn → Y be a function symbol, ti terms of type Xi. By

induction, the terms ti are interpreted by arrows ti(z̄)(M): Z̄(M) → X
(M)
i ,

and f(t1, . . . , tn) = f(t̄(z̄)) is interpreted by the composite

f (M)(t
(M)
1 , . . . , t

(M)
n): Z̄(M)

〈t(M)
1 ,...,t

(M)
n 〉

//X̄(M) f
(M)

//Y (M) .

(F1) {z̄ | t1 = t2}(M) is the equaliser of Z̄(M)
t1(z̄)(M)

//

t2(z̄)(M)
//X(M) .

(F2) {z̄ | R(t1, . . . , tn)}(M) is the subobject of Z̄(M) defined by the pullback
in

pb � � //

��

Z̄(M)

〈t(M)
1 ,...,t

(M)
n 〉

��
R(M) � � // X̄(M).

(F3) {z̄ | >}(M) is Z̄(M).
(F4) {z̄ | ϕ ∧ ψ}(M) = {z̄ | ϕ}(M) ∧ {z̄ | ψ}(M); and finally, {z̄ | ∃yϕ}(M) =

∃π{(y, z̄) | ϕ}(M), where π is the projection Y (M) × Z̄(M) → Z̄(M).

An interpretation M is called a model of a sequent ϕ ⇒ ψ (notation:
M |= ϕ ⇒ ψ) if {x̄ | ϕ}(M) ≤ {x̄ | ψ}(M) as subobjects of X̄(M), where x̄: X̄

13

Regular Categories and Regular Logic

is the tuple (or set) of those variables occurring free either in ϕ or in ψ. The
interpretation M is a model of a theory T (M |= T) if it is a model of each
sequent in T .

Example 3.2 Let S be the signature with sorts X, Y, Z and three function
symbols f :X → Y , g:Y → Z and h:X → Z. An interpretation M of L(S)
in a regular category C is a model of h(x) = g(f(x)) if and only if h(M) =
g(M) ◦ f (M):X(M) → Z(M). Indeed, {x | h(x) = g(f(x))}(M) is the subobject

determined by the equaliser E of the two arrows X(M)
h(M)

//

g(M)◦f(M)

//Z(M) ; and

M |= h(x) = g(f(x)) iff E ∼= X (M) iff h(M) = g(M) ◦ f (M).

In the next section we will give a sound (and complete) calculus for regular
logic. Here we have to prove two technical lemmas which give information
about dummy variables and about substitution.

Lemma 3.3 Let ϕ be a formula with free variables among the tuple z̄. Write
moreover π:Y (M) × Z̄(M) → Z̄(M) for the projection to Z̄(M). Then {(y, z̄) |
ϕ}(M) = π−1{z̄ | ϕ}(M).

Proof. We first note that for terms t of type X one proves by induction that
t(y, z̄)(M) = t(z̄)(M) ◦ π:Y (M) × Z̄(M) → X(M).

Then we proceed again by induction, this time on ϕ. The case ϕ ≡ > is
trivial, while ϕ ≡ R(t̄) follows since we have the diagram

{(y, z̄) | R(t̄)}(M) � � //

��

Y (M) × Z̄(M)

π

��

// Y (M)

��
{z̄ | R(t̄)}(M) � � //

��

Z̄(M)

〈t̄(M)〉
��

// 1

R
� � // X̄

where all squares are pullbacks. The case ϕ∧ψ holds (by induction) because
π−1 preserves binary meets. For ϕ ≡ ∃xψ we calculate

{(y, z̄) | ∃xψ}(M) = ∃p{(y, x, z̄) | ψ}(M) (by definition)
= ∃p(πX×Z̄)−1{(x, z̄) | ψ}(M) (by induction)
= (πZ̄)−1∃q{(x, z̄) | ψ}(M) (by Lemma 2.9)
= (πZ̄)−1{z̄ | ∃xψ}(M)

14

3. Regular Logic

where we used the pullback square

Y (M) ×X(M) × Z̄(M)
p //

πX×Z̄
��

Y (M) × Z̄(M)

πZ̄
��

X(M) × Z̄(M)
q

// Z̄(M)

The case ϕ ≡ t1 = t2 holds since taking the equaliser of two arrows commutes
with taking products. 2

As a consequence of the proof we can always write t(M) instead of t(z̄)(M),
since these arrows are uniquely determined provided we know what they are
in the case z̄ = FV(t).

Lemma 3.4 Let ψ be a formula with free variables among z̄, y and let b be
a term of type Y (with free variables among z̄) which is substitutable for
y in ψ, i.e., after substitution no free variable of b becomes bound in ψ(b).
Then {z̄ | ψ(b)}(M) = 〈b(M), idZ̄(M)〉−1{(y, z̄) | ψ}(M); that is, there is a
pullback square

{z̄ | ψ(b)}(M)

��

� � // Z̄(M)

〈b(M),id
Z̄(M) 〉

��
{(y, z̄) | ψ}(M) � � // Y (M) × Z̄(M)

Proof. We prove this by induction on ψ, but first we note that for a term t
of type X with free variables among (y, z̄),

t(b/y, z̄)(M) = t(M) ◦ 〈b(M), idZ̄(M)〉: Z̄(M) → Y (M) × Z̄(M) → X(M).

(The proof is by induction as well.) Then the case ψ ≡ t1 = t2 follows from
Exercise E.1, while the cases ψ ≡ R(t̄), ψ ≡ >, and ψ ≡ ψ1 ∧ ψ2 are either
trivial or easy.

Finally, suppose ψ = ∃xϕ(x). By assumption (b is substitutable in ψ) we
have x /∈ FV(b). The proof of this case is contained in the following cube,
where we assumed for simplicity that z̄ is the empty sequence. Here the
front square is just the pullback square, as is the left side. Then the map
{(x, y) | ϕ(x, y)}(M) → Y (M) is factored as a regular epimorphism followed

15

Regular Categories and Regular Logic

by a monomorphism, with the image by definition {y | ∃xϕ}(M). This yields
the bottom of the cube. Finally, the right side and the back side are obtained
as pullbacks of the regular epi–mono factorisation along the map b(M):

{x | ϕ(x, b)}(M)

��

// //
� o

��???????????????????
(b(M))−1{y | ∃xϕ}(M)

��

� o

��????????????????????

X(M)

〈id,b(M)〉

��

// 1

b(M)

��

{(x, y) | ϕ}(M) // //
� o

��???????????????????
{y | ∃xϕ}(M)

� o

��???????????????????

X(M) × Y (M)
π

// Y (M)

We deduce that the factorisation

{x | ϕ(x, b)}(M) � (b(M))−1{y | ∃xϕ(x, y)}(M) ↪→ 1

is the regular epi–mono factorisation of {x | ϕ(x, b)}(M) → 1, so that we get
the equality {· | ∃xϕ(x, b)}(M) = (b(M))−1{y | ∃xϕ(x, y)}(M). 2

We want to make the class of models of a theory T in a regular category
C into another category Mod(T, C). A morphism h between two models M
and N of T is a family of maps {hX :X(M) → X(N)}X∈sortS

which commute
with the interpretations of the basic operations in our language, i.e., for c:X

16

3. Regular Logic

a constant, f : X̄ → Y a function symbol the diagrams

1
c(M)

//

c(N) !!CCCCCCCCC X(M)

hX
��

X̄(M)
f(M)

//

hX1
×···×hXn

��

Y (M)

hY
��

X(N) X̄(N)
f(N)

// Y (N)

commute; while for a relation symbol R� X̄ the composite (hX1×· · ·×hXn)◦
i(M):R(M) → X̄(M) → X̄(N) should factor through the inclusion R(N) ↪→
X̄(N).

By induction one proves that for all terms t(z̄) of type Y ,

Z̄(M) t(M)
//

hZ̄
��

Y (M)

hY
��

Z̄(N)
t(N)

// Y (N)

commutes (hZ̄ being the product hZ1 ×· · ·×hZn); and for each formula ϕ(z̄)
the composite {z̄ | ϕ}(M) ↪→ Z̄(M) → Z̄(N) factors through {z̄ | ϕ}(N).

Let F : C → D be a regular functor between regular categories. If M is a
model of a theory T (formulated in L(S)) we get an interpretation F (M) of
L(S) in D as follows: We define5

— for a sort X in sortS, X(F (M)) = F (X(M));
— for a constant c:X, c(F (M)) = F (c(M)): 1D → X(F (M));
— for an arrow f : X̄ → Y in sortS, f (F (M)) = F (f (M));
— and for R� X̄ a relation symbol, R(F (M)) = F (R(M))� X̄(F (M)).

A straightforward induction shows that for all terms t of type Y with free
variables among z̄: Z̄,

t(F (M)) = F (t(M)): Z̄(F (M)) → X(F (M)),

and finally, again by induction, one proves that for all regular formulae ϕ in
the underlying language

{x̄ | ϕ}(F (M)) = F ({x̄ | ϕ}(M)).

5Strictly speaking, F does not preserve the chosen terminal objects, the binary products
and the equalisers. But, for example, there is a canonical isomorphism F (1) ∼= 1. We
suppressed mentioning explicitly these isomorphisms, but for being precise they should be
present. The point is that they do no harm because they are unique.

17

Regular Categories and Regular Logic

It follows that F (M) is a model of T , since for a sequent ϕ ⇒ ψ in T we
have {x̄ | ϕ}(M) ≤ {x̄ | ψ}(M) and F preserves the order of subobjects.

Moreover, if h:M → N is a map in Mod(T, C) we can apply F pointwise
to get a map F (h) = {F (hX):X(F (M)) → X(F (N))}X∈sortS

between the models
F (M) and F (N). For the record:

Lemma 3.5 A regular functor F : C → D between regular categories induces,
for each regular theory T , a functor Mod(T,−):FT : Mod(T, C)→ Mod(T,D).
In particular we have a functor RegCat→ Cat, from small regular categories
to small categories. 2

On the other side, if M is a fixed model of T in a regular category E we
get for each regular category D a functor

MM,D = (−)T (M): RegCat(E ,D)→ Mod(T,D),

which on objects sends a functor G: E → D to the model G(M) in D. A
natural transformation α:G⇒ H is sent to the map between models

{αX(M):G(X(M))→ H(X(M))}X∈sortS
.

Moreover, if F :D → C is a regular functor the diagram of functors

RegCat(E ,D)
MM,D //

F◦(−)
��

Mod(T,D)

FT
��

RegCat(E , C)
MM,C

// Mod(T, C)

commutes.

4 A Sound Calculus

Here we fix a language L(S) and define a sequence of entailment relations
(or deduction relations) `F between formulae, the relations being indexed
by finite sets F of (typed) variables. The sequent ϕ `F ψ (or ϕ `x̄ ψ)
is only defined if both the free variables of ϕ and ψ are contained in the
set F . Writing down expressions like that it is always assumed that this side
condition is fulfilled.

18

4. A Sound Calculus

The reason for the subscripts is as follows: Even in the simplest case
where p is a closed regular formula there is an essential difference between
the two interpretations {· | p}(M) � 1 and {x̄ | p}(M) � X̄(M) (M some
interpretation in a regular category). From the first we can always get the
second by pullback along !X(M) :X(M) → 1, but the second does not determine
the first. This is only the case if !X(M) is a regular epimorphism, in which case
{· | p}(M) = ∃!

X(M)
{x̄ | p}(M). Thus, if we would have restricted ourselves to

interpretations in which each sort X is interpreted by an object X(M) with
‘global support’ (i.e., objects such that !X(M) is a regular epimorphism), then
we could get rid of these subscripts. We remark as well that X(M) has global
support if and only if M |= ∃x.x = x, i.e., if it is true in M that X(M) is
‘inhabited’6.

We group the axioms and rules of inference for our entailment relations
as follows:

1. Structural rules

1.1 p `F p;

1.2
p `F q q `F r

p `F r
;

1.3
p `F q

p `F∪{y} q
;

1.4
ϕ(y) `F ψ(y)
ϕ(b) `F\{y} ψ(b)

,

where y:B is a variable, b is a term of type B, and b is substitutable
for y on both sides, that is, no free variable of b becomes bound in
ϕ(b) and ψ(b) after substitution. As well, implicitly it is assumed that
FV(b) ⊂ F \ {y}.

2. Logical rules

2.1 p `F >;

2.2 if r `F p ∧ q then r `F p and r `F q; and if both r `F p and r `F q

then r `F p ∧ q;
6In intuitionistic logic being inhabited is a positive way to express non-emptiness.

19

Regular Categories and Regular Logic

2.3 if ∃yψ(y) `F p then ψ(y) `F∪{y} p; and conversely if ψ(y) `F∪{y} p then
∃yψ(y) `F p.

3. Rules for equality

3.1 > `x x = x;

3.2 x1 = x2 `x1,x2 x2 = x1;

3.3 x1 = x2 ∧ x2 = x3 `x1,x2,x3 x1 = x3;

3.4 x̄1 = x̄2 `x̄1,x̄2 f(x̄1) = f(x̄2),
for each function symbol f : X̄ → Y in the language. (Here x̄1 = x̄2

stands of course for
∧
i x

1
i = x2

i .)

3.5 x̄1 = x̄2 ∧R(x̄1) `x̄1,x̄2 R(x̄2),
for each relation symbol R� X̄ in the language.

We write ` for `∅ and `F ψ for ∅ `F ψ. Given a theory T we write
T, ϕ `F ψ if ϕ `TF ψ, where `TF denotes entailment in the calculus above
extended by the axioms

ϕ `FV(ϕ)∪FV(ψ) ψ for ϕ⇒ ψ in T .

To give the whole a more symmetric outlook we write as well T `x̄ ϕ ⇒ ψ

for the fact that (modulo T), ϕ implies ψ. Then T `x̄ ϕ⇔ ψ stands for the
fact that modulo T the formula ϕ is provably equivalent to the formula ψ.

Lemma 4.1 (Soundness.) Let T be a theory, and M a model of T in a
regular category. If T, ϕ `x̄ ψ then {x̄ | ϕ}(M) ≤ {x̄ | ϕ}(M), as subobjects
of X̄(M).

Proof. We prove this lemma by induction over a derivation of ϕ `Tx̄ ψ. In case
of an axiom ϕ⇒ ψ of T this is part of the definition of being a model. The
case of the axiom 1.1 is trivial, while 2.1 holds since {x̄ | p}(M) ≤ X̄(M) =
{x̄ | >}(M).

For the induction steps rule 1.2 is sound since the order on X̄(M) is tran-
sitive, while 1.3 is sound because pullback along the projection π:Y (M) ×
X̄(M) → X̄(M) induces a monotone map Sub(X̄(M)) → Sub(Y (M) × X̄(M)).
(Note that Lemma 3.3 enters here describing {(y, x̄) | p}(M) as π−1{x̄ | p}(M).)

20

4. A Sound Calculus

Rule 2.2 is sound because {x̄ | p∧q}(M) = {x̄ | p}(M)∧Sub(X̄(M)){x̄ | q}(M),
while 2.3 is sound since {x̄ | ∃yψ(y)}(M) = ∃π{(y, x̄) | ψ(y)}(M) ≤ {x̄ | p}(M)

if and only if {(y, x̄) | ψ(y)}(M) ≤ Y (M) × {x̄ | p}(M) = {(y, x̄) | p}(M), for π
the projection Y (M) × X̄(M) → X̄(M) (here we use Lemma 3.3 again).

Soundness of rule 1.4 follows from Lemma 3.4.
It remains to prove soundness of the rules for equality. Rule 3.1 is sound

since {x | x = x}(M) is the equaliser of idX , idX :X(M) ⇒ X(M), which
isX(M); rule 3.2 is sound because the equaliser of π1, π2:X(M)×X(M) ⇒ X(M)

factors through (in fact, is equal to) the equaliser of π2 and π1.
The interpretation of x1 = x2 ∧ x2 = x3 is the pullback

P
� � q //

� _

p

��

E2,3� _

i2,3
��

E1,2
� �

i1,2
// X(M) ×X(M) ×X(M)

π1 //
π2

//

π3

��
π2

��

X

X

Since π1i1,2p = π2i1,2p = π2i2,3q = π3i2,3q the canonical map P → X(M) ×
X(M) ×X(M) factors through the equaliser of π1 ad π2, the interpretation of
{(x1, x2, x3) | x1 = x3}(M).

Rule 3.4 is sound since the diagonal X̄(M) → X̄(M) × X̄(M), the interpre-
tation of x̄1 = x̄2, equalises fπ1 and fπ2,

{(x̄1, x̄2) | f(x̄1)) = f(x̄2)}(M) � � // X(M) ×X(M)
fπ1 //
fπ2

//

π2

��
π1

��

Y

X̄(M)

OO�
�
�

' �

44iiiiiiiiiiiiiiiiiiii

id
// X̄(M)

f

99rrrrrrrrrrrr

Finally, for rule 3.5, the left side x̄1 = x̄2 ∧R(x̄1) is the pullback

P
� � q //

� _

p

��

X̄(M)
� _

∆
��

R(M) × X̄(M)

��

� �

r(M)×id

// X̄(M) × X̄(M)

π1

��
R(M) � �

r(M)

// X̄(M) .

21

Regular Categories and Regular Logic

It follows that P ↪→ X̄(M) × X̄(M) factors through R(M) ↪→ X̄(M) ↪→ X̄(M) ×
X̄(M), in particular through X̄(M) × R(M), the interpretation of R(x̄2). 2

Let us mention that classical first-order logic is conservative over regular
logic (provided one allows empty domains as well), so that intuitively all
clauses of the following lemma are true. We leave the proof as an exercise,
but mention the connection between (i) and Lemma 2.6.

Lemma 4.2 (i) `z̄ ∃x̄(p(x̄) ∧ q)⇔ (∃x̄p(x̄)) ∧ q,
provided x̄ does not occur free in q.

(ii) `x̄,x̄′ p(x̄) ∧ x̄ = x̄′ ⇒ p(x̄′). 2

5 The Internal Logic of a Regular Category

Let C be a regular category. To it we associate a signature and language as
follows: SC has as basic sorts the objects of the category C. Again we fix a
terminal object and for each finite list of objects of C one specified product
of this finite set of objects.

Then our signature has for each arrow c: 1→ X in C one constant symbol
c:X, for each arrow f : X̄ → Y one function symbol f : X̄ → Y , and for each
subobject R � X̄ one relation symbol R � X̄. Obviously, the language
L(S) has a canonical interpretation IC in C. We define TC to be the theory
of this interpretation, i.e., the set of all sequents ϕ `F ψ in the language
L(S) which are true under the interpretation IC. Instead of IC one writes
usually just C. In what follows, we do not distinguish between a symbol,
say a function symbol f , in our language and its interpretation f (IC) in the
category C.

We will first show how different categorical notions are captured by the
internal language of the category.

Lemma 5.1 Let C be a regular category.

(i) Let A
f→ B

g→ C be two arrows and h:A → C. Then h = g ◦ f if and
only if C |= h(x) = g(f(x)), where x is a free variable of type A.

(ii) An arrow m:X → Y is mono if and only if C |= m(x1) = m(x2) ⇒
x1 = x2.

(iii) The arrow f :X → Y is a regular epimorphism if and only if C |=
∃xf(x) = y. (One should read this as ‘ ∀y∃xf(x) = y’.)

22

5. The Internal Logic of a Regular Category

Proof. The first part is as in Example 3.2. For the characterisation of
monomorphisms we look at

{(x1, x2) | x1 = x2}(C) � � // X ×X
π1 //
π2

// X

m

��
{(x1, x2) | m(x1) = m(x2)}(C)

' � i

55jjjjjjjjjjjjjjjj
Y,

that is, the top line is an equaliser diagram and {(x1, x2) | m(x1) = m(x2)}(C)

is the equaliser of mπ1 and mπ2. If m is a monomorphism then the inclusion
i equalises π1 and π2, so factors through {(x1, x2) | x1 = x2}(C). Conversely,
if we have this factorisation then for two parallel arrows f, g:Z ⇒ X such
that mf = mg the map 〈f, g〉:Z → X × X factors through i, in particular
through the interpretation of x1 = x2. Hence f = π1〈f, g〉 = π2〈f, g〉 = g,
and m is a monomorphism.

For the last part we note first that graph(f) ↪→ X × Y is the equaliser
of fπ1 and π2 (Exercise E.4), the interpretation of f(x) = y. Then we can
apply Lemma 2.3 to the diagram

X // //

f
**UUUUUUUUUUUUUUUUUUUUUUUU graph(f) � � //

&&MMMMMMMMMMM
X × Y

π2

��
Y

to see that f is a regular epimorphism iff graph(f) → Y is, which holds if
and only if C |= ∃xf(x) = y. 2

The following lemma characterises finite limits in a regular category with
the help of the internal logic.

Lemma 5.2 Let C be again a regular category.
(i) An object X is C is terminal iff C |= x1 = x2 and C |= ∃xx = x.

(ii) Two maps f :Z → X and g:Z → Y make Z a product of X and Y
if and only if C |= f(z1) = f(z2) ∧ g(z1) = g(z2) ⇒ z1 = z2 and
C |= ∃z(f(z) = x ∧ g(z) = y).

(iii) In a diagram Z
e //X

f //
g

//Y such that fe = ge, the object E is the

equaliser of f and g if and only if e is a mono and C |= f(x) = g(x)⇒
∃ze(z) = x. This can be expressed using the predicate Z associated to
the subobject Z ↪→ X as C |= f(x) = g(x)⇒ Z(x).

23

Regular Categories and Regular Logic

Proof. For an object X of C, C |= x1 = x2 if and only if ∆:X ↪→ X×X is an
isomorphism, which is equivalent to say that !X :X → 1 is a monomorphism.
Combining this with the fact that C |= ∃x(x = x) if and only if !X :X → 1 is
a regular epimorphism we get the first part of the lemma.

For the second part note first that the interpretation of f(z1) = f(z2) ∧
g(z1) = g(z2) is the equaliser of 〈f, g〉π1 and 〈f,G〉π2 as in

E
� � e // Z × Z

π1 //
π2

// Z
〈f,g〉 // X × Y.

Then, we have seen arguments like this before, E factors through the diagonal
∆Z :Z ↪→ Z × Z (the interpretation of z1 = z2) if and only if 〈f, g〉 is a
monomorphism.

Moreover, from the following diagram of pullbacks, constructed by first
pulling back the right vertical map along X → 1 and then pulling back the
resulting map X × Z → X × Z × Y along Z × Y → X × Z × Y , we deduce
that graph(f)×Y ∧X ×graph(g), the interpretation of f(z) = x∧ g(z) = y,
is the image of the map 〈f, idZ , g〉:Z → X × Z × Y :

Z // //

����

•

����

� � // X × Z

����

// Z

����
graph(g) // //

_�

��

{(x, z, y) | f(z) = x ∧ g(z) = y} � � //
_�

��

X × graph(g) //
_�

��

graph(g)
_�

��
Z × Y // // graph(f)× Y � � // X × Z × Y // Z × Y .

Therefore 〈f, g〉 is a regular epimorphism if and only if C |= ∃z(f(z) =
x ∧ g(z) = y):

Z
∼= // //

〈f,g〉))RRRRRRRRRRRRRRRR • � � //

%%KKKKKKKKKKK X × Z × Y
π

��
X × Y .

Finally, {x | fx = gx}(C) is the equaliser of f and g, and because fe = ge

there is a factorisation

∃eZ � � // {x | fx = gx}(C) � � // X
f //
g

// Y .

Z

OOOO

e

33gggggggggggggggggggggggggggggg

24

6. The Generic Model of a Regular Theory

Then e is a mono if and only if Z → ∃eZ is a monomorphism (which is
equivalent to being an isomorphism since this map is a regular epimorphism),
and C |= f(x) = g(x) ⇒ ∃ze(z) = x if and only if the monomorphism
∃eZ ↪→ {x | fx = gx}(C) is a regular epimorphism. These two conditions are
clearly equivalent to Z being the coequaliser of f and g. 2

In the previous lemmas we saw that we can characterise all those prop-
erties of a category which make it a regular category. Therefore it should be
no surprise that we can describe regular functors in terms of logic as well.

If F : C → D is a functor between regular categories (not necessarily reg-
ular) we get an interpretation F of the (functional part of the) signature SC
as follows:

— X(F) = F (X), for X ∈ sortS.
— f (F):X(F) → Y (F) = F (f :X → Y), for f an arrow in C.

Proposition 5.3 The functor F is regular if and only if F |= TC.

To be precise we have to restrict ourselves to those sequents ϕ⇒ ψ which
involve only function symbols.

Proof. One direction is just part of Lemma 3.5. For the other, if X is a
terminal object then C |= x1 = x2 and C |= ∃x(x = x). Then F |= x1 = x2

and F |= ∃x(x = x), i.e., using the internal logic of D we see that F (X) =
X(F) is a terminal object (by Lemma 5.2 again). In the same way one proves
that F preserves products and equalisers, which can be defined using the
functional part of the internal language of a category.

As well, F preserves the image factorisation of a map, hence in particular
those regular epimorphisms arising as the coequaliser of the kernel pair of an
arrow (and this kernel pair, being a pullback, is preserved as well). 2

6 The Generic Model of a Regular Theory

The aim of this section is to show that there is a regular category R(T) and
equivalences of categories

Mod(T, C) ∼= RegCat(R(T), C),

25

Regular Categories and Regular Logic

natural in C. (This just means that the functor Mod(T,−): RegCat→ Cat is
representable in a weak sense.) In particular, R(T) will contain a conserva-
tive model of T , a model in which provability in the calculus for regular logic
and satisfiability coincide.

We fix T , and construct R(T) as a sort of Lindenbaum–Tarski-category:

— Objects are equivalence classes of pairs (X̄, p(x̄)) where x̄: X̄ is a finite
list of sorts, and p is a regular formula. (Here X̄ is called the context
of p.) Only formulae in the same context can be equivalent. Then
(X̄, p1(x̄1)) and (X̄, p2(x̄2)) are equivalent if

T `x̄ p1(x̄)⇔ p2(x̄),

where x̄ is a set of fresh variables of type X̄. We denote equivalence
classes by {x̄ | p} and assume that the context is understood. (Note
that this notion somehow binds the variables x̄ occurring in p.)

— A morphism from {x̄ | p} to {ȳ | q} is an equivalence class of regular
formulae–in–context (X̄Ȳ , γ(x̄, ȳ)) where γ is provably functional:

T `x̄,ȳ γ(x̄, ȳ)⇒ p(x̄) ∧ q(ȳ)
T `x̄ p(x̄)⇒ ∃ȳγ(x̄, ȳ)
T `x̄,ȳ1,ȳ2 γ(x̄, ȳ1) ∧ γ(x̄, ȳ2)⇒ ȳ1 = ȳ2

(Intuitively this says that γ(x̄, ȳ) is the graph of a function.) Again, two
such formulae–in–context are equivalent if they are provably equivalent
in `T . Here we denote equivalence classes by {(x̄, ȳ) | γ(x̄, ȳ)} or simply
by {γ}.

— The composition of two arrows {γ}: {x̄ | p} → {ȳ | q} and {χ}: {ȳ |
q} → {z̄ | r} is given by the equivalence class of the formula

∃x̄(γ(ȳ, x̄) ∧ χ(x̄, z̄)).

(We leave it as an exercise to show that this is indeed well-defined.)

Summing up this construction we get a small category R(T).

Lemma 6.1 The category R(T) has finite limits:
(i) The object {· | >} (the equivalence class of the formula–in–context

(∅,>)) is the terminal object in R(T).

26

6. The Generic Model of a Regular Theory

(ii) The product of {x̄ | p} and {ȳ | q} is given by the object {(x̄, ȳ) | p∧ q},
with projection to {x̄ | p} the equivalence class {(x̄ȳ, x̄′) | p(x̄)∧q(ȳ)∧x̄ =
x̄′}, and similar for the other projection. (Here we use the comma in
(x̄ȳ, x̄′) to separate source and target!)

(iii) The equaliser of two parallel arrows {γ}, {γ′}: {x̄ | p} ⇒ {ȳ | q} is the
object E = {x̄ | ε(x̄)} for ε(x̄) ≡ ∃ȳ(γ(x̄, ȳ)∧γ(x̄, ȳ)), with inclusion the
map {(x̄, x̄′) | ε(x̄) ∧ x̄ = x̄′}.

(iv) Given two arrows {ϕ}: {x̄ | p} → {z̄ | r} and {γ}: {ȳ | q} → {z̄ | r}
their pullback is the object {(x̄, ȳ) | ∃z̄(ϕ(x̄, z̄)∧ γ(ȳ, z̄))} with canonical
projections.

We note that in our category R(T) objects like the terminal object or the
product of two given objects are actually unique, and not just unique up to
isomorphism. The reason is the equivalence relation we incorporated in the
definition of the objects of R(T). Strictly speaking, this was not necessary
(see Exercise E.13), but it facilitates our proofs.

Proof. We argue informally and make extensive use of the properties of the
provability relation `T .

Obviously, given an arbitrary object {x̄ | p} there is at least one arrow {x̄ |
p} → {· | >} namely the one induced by the formula–in–context (X̄∅, p(x̄)).
If there are two of them, say {γ} and {γ′}, then by definition of being arrows,
γ(x̄) `Tx̄ p(x̄) and p(x̄) `Tx̄ ∃∅γ′(x̄). The latter is equivalent to p(x̄) `Tx̄ γ′(x̄)
so that by monotonicity of the deduction relation γ `Tx̄ γ′. By a similar
argument for the other direction we conclude that modulo T , γ is provably
equivalent to γ′ so that the induced arrows are identical.

For products fix {x̄ | p} and {ȳ | q}, and the two projections

{(x̄, ȳ) | p ∧ q} {π2} //

{π1}
��

{ȳ | q}

{x̄ | p}

where for example {π1} is given by π1(x̄, ȳ, x̄′) ≡ p(x̄) ∧ q(ȳ) ∧ x̄ = x̄′. (We
leave it to the reader to check that both {π1} and {π2} are indeed arrows
in R(T).) If {ϕ}: {z̄ | r} → {x̄ | p} and {γ}: {z̄ | r} → {ȳ | q} are arrows in
R(T) we define

µ(z̄, x̄, ȳ) ≡ ϕ(z̄, x̄) ∧ γ(z̄, ȳ)

27

Regular Categories and Regular Logic

and claim that µ induces the unique arrow {z̄ | r} → {(x̄, ȳ) | p ∧ q} such
that {π1} ◦ {µ} = {ϕ} and {π2} ◦ {µ} = {γ}.

Clearly, µ `Tz̄,x̄,ȳ r(z̄) ∧ (p(x̄) ∧ q(ȳ)) since ϕ `Tz̄,x̄ r ∧ p and γ `Tz̄,ȳ q. Then

r(z̄) `Tz̄ ∃x̄ϕ(z̄, x̄) ∧ ∃ȳγ(z̄, ȳ) `Tz̄ ∃x̄∃ȳ(ϕ(z̄, x̄) ∧ γ(z̄, ȳ))

shows that µ is total. It is functional because we deduce (modulo T) from
µ(z̄, x̄, ȳ) ∧ µ(z̄, x̄′, ȳ′) first ϕ(z̄, x̄)∧ ϕ(z̄, x̄′) and then x̄ = x̄′, and similar for
ȳ = ȳ′. Summing up we see that {µ} is indeed a map {x | r} → {(x̄, ȳ) | p∧q}.

The composite {π1}◦{µ} is given by ∃x̄ȳ(µ(z̄, x̄, ȳ)∧p(x̄)∧q(ȳ)∧ x̄ = x̄′),
with free variables z̄ and x̄′. Since x̄ = x̄′ we can get rid of the existential
quantifier ∃x̄, and the formula is equivalent (modulo T) to ϕ(z̄, x̄′) ∧ p(x̄′) ∧
∃ȳ(γ(z̄, ȳ) ∧ q(ȳ)). Because ϕ `Tz̄,x̄ p, γ `Tz̄,ȳ q and ϕ(z̄, x̄′) `Tz̄,x̄′ r(z̄) `Tz̄
∃ȳγ(z̄, ȳ) we deduce that {π1} ◦ {µ} is induced by a formula provably equiv-
alent to ϕ, and this arrow thus equals {ϕ}. By a similar argument the other
triangle commutes.

It remains to show uniqueness: This we prove by showing that if {π1} ◦
{µ} = {ϕ} and {π2} ◦ {µ} = {γ} then T `z̄,x̄,ȳ µ⇔ ϕ ∧ γ. The assumptions
for the first triangle say that modulo T the formula ϕ(z̄, x̄) is equivalent to

∃x̄′ȳ′(µ(z̄, x̄′, ȳ′) ∧ p(x̄′) ∧ q(ȳ′) ∧ x̄ = x̄′),

that is, ϕ(z̄, x̄) ⇔ ∃ȳ′(µ(z̄, x̄, ȳ′) and similar for γ. Thus, again modulo T ,
ϕ(z̄, x̄)∧ γ(z̄, ȳ) is equivalent to ∃ȳ′(µ(z̄, x̄, ȳ′)∧∃x̄′µ(z̄, x̄′, ȳ)), which in turn
is equivalent to µ(z̄, x̄, ȳ) because µ is functional and the image of z̄, i.e., the
tuple (x̄, ȳ) such that µ(z̄, x̄, ȳ) is provably unique.

We leave the case of equalisers as an exercise (Exercise E.10) and note
that the description of pullbacks follows from the construction of pullbacks
using products and equalisers (see Exercise E.2). 2

The proof of the following lemma is left as an exercise:

Lemma 6.2 An arrow {ϕ}: {x̄ | p} → {ȳ | q} is
(i) a monomorphism if and only if T `x̄1,x̄2 ∃ȳ(ϕ(x̄1, ȳ) ∧ ϕ(x̄2, ȳ))⇒ x̄1 =

x̄2;
(ii) and a regular epimorphism if and only if T `ȳ q(ȳ)⇒ ∃x̄ϕ(x̄, ȳ).

(iii) A map {p(x̄) ∧ x̄ = x̄′}: {x̄ | p} → {x̄ | q} is a monomorphism if and
only if T `x̄ p⇒ q. 2

28

6. The Generic Model of a Regular Theory

Proposition 6.3 R(T) is a regular category.

Proof. ¿From Lemma 6.1 we know that R(T) has finite limits. In a pullback
diagram

{(ȳ, x̄) | ∃z̄(γ ∧ ϕ)} //

{π}
��

{x̄ | p}
{ϕ}

��
{ȳ | q}

{γ}
// {z̄ | r}

the map {π} is induced by π(ȳ, x̄, ȳ′) = ∃z̄(γ ∧ ϕ) ∧ ȳ = ȳ′.
Suppose ϕ is a regular epimorphism, i.e., `z̄ r(z̄)⇒ ∃x̄ϕ(x̄, z̄). Then from

q(ȳ) we deduce ∃z̄γ(ȳ, z̄), which is equivalent to ∃z̄(γ(ȳ, z̄) ∧ r(z̄)). Modulo
T we can deduce further (using the assumption) ∃z̄(γ(ȳ, z̄) ∧ ∃x̄ϕ(x̄, z̄)). By
Lemma 4.2 this is provably equivalent to ∃x̄∃z̄(γ(ȳ, z̄) ∧ ϕ(x̄, z̄)) (we inter-
changed the existential quantifiers), as we wanted. So regular epimorphisms
are stable under pullbacks. 2

The category R(T) contains a natural interpretation U of the underlying
language L(S):

— X(U) = {x | x = x},
where x is some variable of type X.

— c(U) = {x | x = c}: {· | >} → X(U),
for each constant in the underlying language.

— f (U) = {x̄, y) | f(x̄) = y},
for each function symbol f : X̄ → Y in functS. We note that this is
indeed an arrow in our category by Exercise E.12. Furthermore we use
that X̄(U) = X

(U)
1 × · · · ×X(U)

n .

— R(U) = {x̄ | R(x̄)},
which is easily seen to be a subobject of X̄(U).

An easy induction shows that for terms t(z̄) of type Y ,

t(z̄)(U) = {(z̄, y) | t(z̄) = y},

an arrow Z̄(U) → Y (U); and for regular formulae ϕ(z̄) that

{z̄ | ϕ}(U) = {z̄ | ϕ}.

29

Regular Categories and Regular Logic

It follows that U is a model of T : If p ⇒ q is a sequent in T then {(x̄, x̄′) |
p(x̄) ∧ x̄ = x̄′} is a monomorphism from {x̄ | p} to {x̄ | q}, so that indeed
{x̄ | p}(U) ≤ {x̄ | q}(U). The model U has the additional property that it is
conservative, i.e., for all sequents p⇒ q,

if U |= p⇒ q then T `x̄ p⇒ q.

Indeed, if U is a model of p ⇒ q then in R(T) there is a monomorphism
{p(x̄) ∧ x̄ = x̄′}: {x̄ | p} → {x̄ | q}, so by Lemma 6.2(iii), T `x̄ p ⇒ q. For
the record:

Proposition 6.4 The canonical interpretation U in the regular categoryR(T)
is a conservative model of T . In particular, the calculus given above is com-
plete with respect to interpretations in (small) regular categories. 2

We are now ready to define the functors involved in the equivalence
Mod(T, C) ∼= RegCat(R(T), C), natural in C.

The functorMC: RegCat(R(T), C)→ Mod(T, C) is the functorMU,C from
the end of Section 3, which sends a functor F :R(T)→ C to the model FT (U)
in C, and a natural transformation α:F ⇒ G to the family

FT (α) = {αX(U):F (X(U))→ G(X(U))}X∈sortS
.

The functor FC: Mod(T, C) → RegCat(R(T), C) sends a model M of T in C
to the functor

FC(M):R(T) → C
{x̄ | p} 7→ {x̄ | p}(M)

{γ}: {x̄ | p} → {ȳ | q} 7→ ‘the unique arrow f : {x̄ | p}(M) → {ȳ | q}(M)

such that graph(f) = {(x̄, ȳ) | γ}(M)’.

(The map f in the arrow part exists by Lemma 2.8. Uniqueness of this map
ensures that we really got a functor.) Soundness of the calculus and the fact
that being a model is defined using the internal logic of C proves that FC(M)
is a regular functor. A morphism between models h:M → N gives rise to a
family of maps

h{x̄|p}: {x̄ | p}(M) → {x̄ | p}(N)

(see the discussion at the end of Section 3) which is natural because if we
have a map {γ}: {x̄ | p} → {ȳ | q} then, since both squares below commute,

30

7. Epilogue

the outer does as well and that is just the naturality square:

{x̄ | p}(M)

����

h{x̄|p} // {x̄ | p}(N)

����
{ȳ | ∃x̄γ(x̄, ȳ)}(M)

h{ȳ|∃x̄γ(x̄,ȳ)} //
� _

��

{ȳ | ∃x̄γ(x̄, ȳ)}(N)
� _

��
{ȳ | q}(M)

h{ȳ|q}
// {ȳ | q}(N)

This functor is again natural in C: If F :D → C is a regular functor then

Mod(T,D)
FD //

FT
��

RegCat(R(T),D)

F◦(−)
��

Mod(T, C)
FC

// RegCat(R(T), C)

commutes. We conclude with the following theorem:

Theorem 6.5 The functors MC and FC induce an equivalence of categories

Mod(T, C) ∼= RegCat(R(T), C),

natural in C. Up to equivalence any small regular category C arises this way
as the ‘classifying category, of a regular theory since C ∼= R(TC).

Proof. It is straightforward from the explicit definition that both ways round
are isomorphic to the identity. The second part follows from Proposition 5.3.

2

7 Epilogue

In these notes we saw a close connection between a fragment of first-order
logic and a particular class of categories. The material of these notes is
treated more or less detailed (more ‘less detailed’) in [12, 2, 4]. Similar
results hold for the following pairs:

31

Regular Categories and Regular Logic

geometric (coherent) logic geometric categories
intuitionistic first–order logic Heyting categories
classical first–order logic Boolean categories
higher–order logic (elementary) toposes
typed λ–calculus cartesian closed categories∑

-
∏

-part of Martin-Löf type theories locally cartesian closed categories.

Good references are for geometric logic7 [8], for first-order logic [4], for
higher–order logic and for the λ–calculus [7], and for Martin Löf type theories
the paper [11].

There is a natural Grothendieck topology on a regular category, and the
sheafified Yoneda embedding into the sheaf topos over this site preserves and
reflects all the regular structure (and more). This explains similar results as
in this note for (infinitary) geometric logic and Grothendieck toposes, the
classical treatment of which is contained in [9]. The situation for first–order
logic and Grothendieck toposes is not as good, but still there are strong
results (like completeness, etc), see the references [6, 3, 10]. The existence
of classifying toposes for geometric theories is already implicit in the thesis
of M. Hakim [5]. She showed among other things that the Zariski topos
classifies local rings, and the associated étale topos classifies henselian local
rings.

Finally, there is a completely different approach to categorical logic, based
on sketches. Roughly speaking, a sketch is a category equipped with two
classes of diagrams. A model of such a sketch is a functor into some category
sending the first class of arrows to limit-diagrams, and the second to colimit-
diagrams. Thus, a sketch is something like a theory, and restrictions on
the class of diagrams allowed (finite, or finite and only limit-diagrams, . . .)
specify in which language this theory is formulated. Here one could start
reading in [2, 1].

Exercises

E.1 Let C be a category with finite limits and E� � //X
p1 //
p2

//Y an equaliser

diagram. For an arbitrary object Z we get the equaliser E′ of the two parallel

7Geometric logic is obtained by replacing regular formulae by those built from atomic
formulae, the logical constants ⊥ and >, the binary operations ∧ and ∨ and existential
quantification ∃.

32

7. Epilogue

arrows X × Z
p1×idZ //
p2×idZ

//Y × Z . Show that E′ = π−1E for π the projection X ×

Y → X.

E.2 Show that the pullback X ×Z Y of f :X → Z and g:Y → Z can be con-
structed as the pullback of f × g along the diagonal ∆Z as in

X ×Z Y � � //

��

X × Y
f×g

��
Z

� �

∆Z

// Z × Z.

(Here ∆Z is the unique map 〈idZ , idZ〉.)

E.3 Prove that the graph of an arrow f :X → Y in C gives a total and functional
relation on (subobject of) X × Y .

E.4 Show that for an arrow f :X → Y the monomorphism graph(f) ↪→ X × Y
is the equaliser of the two parallel arrows fπ1, π2:X × Y ⇒ Y .

E.5 Prove that the category of groups is regular. Can you do the same for the
category of rings?

E.6 An abelian group G is torsion-free if for all natural numbers n ≥ 1 and all
elements g ∈ G, n ·g = 0 implies g = 0. Show that the category tfAb of torsion-free
abelian groups (which is a full sub-category of the category of abelian groups) is
regular.

E.7 Show that Top, the category of topological spaces, has all finite limits and
all coequalisers. Given an example of a regular epimorphism that is not stable
under pullbacks. Conclude that Top is not regular.

E.8 Let C be a (small) regular category, D a (small) category. Show that the
functor category [D, C] is regular.

E.9 Let C be a regular category. Prove that the slice category C/C is again regular
for each object C in C.

E.10 Complete in the proof of Lemma 6.1 the description of equalisers.

E.11 Provide the proof of Lemma 6.2.

33

Regular Categories and Regular Logic

E.12 Verify that if f : X̄ → Y is a function symbol in some language then {(x̄, y) |
f(x̄) = y} is a morphism in R(T) from {x̄ | x̄ = x̄} to {y | y = y}. (Here T is
some fixed theory formulated in the underlying language.)

E.13 Define a category R′(T) similar as R(T), but using as objects formulae–
in–contexts instead of equivalence classes thereof. Prove that R′(T) is equivalent
to R(T). Can you use for arrows as well formulae–in–contexts instead of equiva-
lence classes?

In the next couple of exercises we develop some forcing semantics for regular logic.
We fix the internal logic L(SC) of a regular category C. For a sort X, a generalised
element at stage U is an arrow α:U → X. For a formula ϕ(x) with free variable
x:X and a generalised element α we say that U forces ϕ(α) (in symbols: U ϕ(α))
if α factors through {x | ϕ}(C), i.e., if ∃α(U) ≤ {x | ϕ}(C) in Sub(X). This definition
extends immediately to formulae with more free variables. For f an arrow U ′ → U

we write α�f for the generalised element α ◦ f at stage U ′.

E.14 Prove the following two properties of the forcing relation:
(i) (Monotonicity.) If U ϕ(α) then for any f :U ′ → U , also U ′ ϕ(α�f).
(ii) (Local character.) If f :U ′ � U is a regular epimorphism and U ′ ϕ(α�f),

then U ϕ(α). [Hint: Show first that {x | ϕ}(C) ↪→ X pulled back along α ◦ f
is an isomorphism and deduce then that {x | ϕ}(C) ↪→ X pulled back along α
is already an isomorphism.]

E.15 Show that the forcing relation in a regular category obeys the following
rules:
(i) U > always holds.
(ii) U ϕ(α) ∧ ψ(α) if and only if U ϕ(α) and U ψ(α).

(iii) U ∃yϕ(y, α) if and only if there exists a regular epimorphism p:V � U and
a generalised element β:V → Y such that V ϕ(β, α�p).

(iv) Suppose that t1 and t2 are terms of type Y with free variable x. Show that

U t1(α) = t2(α) if and only if t
(C)
1 α = t

(C)
2 α:U → X ⇒ Y .

E.16 Extend the forcing relation to sequents ϕ⇒ ψ by U ϕ(α) ⇒ ψ(α) if for
all arrows f :U ′ → U , if U ′ ϕ(α�f) then U ′ ψ(α�f).
(i) Show that C |= ϕ(x) if and only if for all U and all generalised elements

α:U → X, U ϕ(α).
(ii) Conclude that for a sequent ϕ(x) ⇒ ψ(x), C |= ϕ ⇒ ψ iff for all U in C and

all α:U → X, if U ϕ(α) then U ψ(α).

34

REFERENCES

References

[1] M. Barr and C. Wells. Category Theory for Computing Science. Prentice
Hall, New York 1990.

[2] F. Borceux. Handbook of Categorical Algebra. Vol. 1, 2 and 3. Cambridge
University Press, Cambridge 1994.

[3] C. Butz and P. T. Johnstone. Classifying toposes for first-order theories.
Ann. Pure Appl. Logic, 91:33-58, 1998.

[4] P. Freyd and A. Scedrov. Categories, Allegories. North–Holland, Ams-
terdam 1990.

[5] M. Hakim. Topos Anneles et Schemas Relatifs. Springer–Verlag, Berlin
1972.

[6] P. Johnstone. Open maps of toposes. Manuscripta Math. 31:1980, no. 1-
3, 217–247.

[7] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical
Logic. Cambridge University Press, Cambridge 1986.

[8] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. Springer–
Verlag, New York 1992.

[9] M. Makkai and G. Reyes. First Order Categorical Logic. Springer–
Verlag, Berlin 1977. (Lecture Notes in Mathematics 611.)

[10] E. Palmgren. Constructive sheaf semantics. Math. Logic Quart. 43:1997,
no. 3, 321–327.

[11] R. A. G. Seely. Locally Cartesian closed categories and type theory.
Math. Proc. Cambridge Philos. Soc. 95:1984, no. 1, 33–48.

[12] J. van Oosten. Basic Category Theory. BRICS Lecture Series, LS-95-1,
January 1995.

35

Recent BRICS Lecture Series Publications

LS-98-2 Carsten Butz. Regular Categories and Regular Logic. October
1998.

LS-98-1 Ulrich Kohlenbach. Proof Interpretations. June 1998.

LS-97-1 Jan Chomicki and David Toman. Temporal Logic in Informa-
tion Systems. November 1997. viii+42 pp. Full version appears
in Chomicki and Saake, editors,Logics for Database and Infor-
mation Systems, 3:31–70, Kluwer Academic Publishers, 1998.

LS-96-6 Torben Braüner. Introduction to Linear Logic. December 1996.
iiiv+55 pp.

LS-96-5 Devdatt P. Dubhashi.What Can’t You Do With LP? December
1996. viii+23 pp.

LS-96-4 Sven Skyum.A Non-Linear Lower Bound for Monotone Circuit
Size. December 1996. viii+14 pp.

LS-96-3 Kristoffer H. Rose. Explicit Substitution – Tutorial & Survey.
September 1996. v+150 pp.

LS-96-2 Susanne Albers. Competitive Online Algorithms. September
1996. iix+57 pp.

LS-96-1 Lars Arge.External-Memory Algorithms with Applications in Ge-
ographic Information Systems. September 1996. iix+53 pp.

LS-95-5 Devdatt P. Dubhashi.Complexity of Logical Theories. September
1995. x+46 pp.

LS-95-4 Dany Breslauer and Devdatt P. Dubhashi. Combinatorics for
Computer Scientists. August 1995. viii+184 pp.

LS-95-3 Michael I. Schwartzbach. Polymorphic Type Inference. June
1995. viii+24 pp.

LS-95-2 Sven Skyum. Introduction to Parallel Algorithms. June 1995.
viii+17 pp. Second Edition.

LS-95-1 Jaap van Oosten.Basic Category Theory. January 1995. vi+75
pp.

