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 This lecture poses some possible set-type-logic theory
 ideas for Autolog, and exercises for the reader to 
 develop.  
  
 §1 Set-type-logic autolog terms -explicit comprehension
                                  
 For a simple example, let's use a small finite type 
 which is explicitly enumerated.
 «
    true => a:t, b:t, c:t, d:t, e:t, f:t, g:t.   // 1
 »
 Suppose that p:t"prop is a proposition regarding type t.
 «
    true => p(a), p(c), p(e), p(g).              // 2
 »
 We might specify the set of objects of type t having 
 property p using terms like this ...
 «
    X:t, p(X) => X∈set(t,p).                    // 3
 »
 Consider the goal
 «
    g∈set(t,p) => goal.                         // 4
 »
  
  
 Here is an autolog proof of the goal ...



  
           true
             |-  rule 1
            g:t
             |-  rule 2
            p(g)
             |-  rule 3  
            g∈set(t,p)
             |-  rule 4
            goal
  
 EXERCISE 1.  Explore how things go IF rule 3 had been
 «
    X:t, p(X) => X∈set(Z:t,p(Z)).                // 3
 »
 where set(Z:t,p(Z)) is used to look like math notation
 {Z:T | P(Z)}.  The issue is using an autolog variable 
 in the set comprehension term.  The set(t,p) notation 
 is more in line with dependent type term notation. By 
 the way, an interesting little project is to add set 
 comprehension terms {Z:T | P(Z)} to autolog.
  
 §2 Generalize set comprehension for types 
  
 If we generalize on the type and predicate in rule 3
 above we get something like 
 «
    T:type, X:T, P:T"prop, P(X) => X∈set(T,P).   //3a      
 »
 Notice that this rule is indexical, predicate P being 
 matched in the predicative literal to the left.
  
 EXERCISE 2.  Replace the rule 3 by the the indexical 
 version 3a and explain how a proof obtains.



  
 The converse of 3a is also a useful axiom:
 «
    T:type, P:T"prop, X∈set(T,P) => X:T, P(X).  //3b       
 »
                                                          
 EXERCISE 3. Construct a proof of the following 
 autolog problem
 «
    true => int:type, q:int"prop, m∈set(int,q).
    int(m), q(m) => goal.
 »
  
 §3 Generalize set comprehension for parametric logic 
  
 Parametric logic operators can be characterized by 
 rule(s)
 «
    T:type, P:T"prop, Q:T"prop => 
                           P∧Q:T"prop,
                           P∨Q:T"prop,
                            ¬P:T"prop.
 »
  
 In an appropriate context where T:type, P:T"prop and 
 Q:T"prop, consider the parametric logic equality 
 modulators
 «
    (P∧Q)(X) = P(X)∧Q(X).
    (P∨Q)(X) = P(X)∨Q(X).
 »
 The left-hand sides are "parametric" functor expressions
 because the operators are themselves functors. The term 
 ¬P(X) is read in the same as (¬P)(X), and is also a 



 parametric functor expression.
  
 Similarly, regarding set comprehension, we might employ
 modulators
 «
    set(T,P∧Q) = set(T,P) ∩ set(T,Q).
    set(T,P∨Q) = set(T,P) ∪ set(T,Q).  
      set(T,⊥) = ∅.
      set(T,⊤) = universe(T). // all X:T
 »
 As in meta lecture #1, we can employ unfolding rules
 «
    A∧B => A, B.
    A∨B => A | B.
 »
 The sets set(T,P) and set(T,¬P) are considered as 
 abstract complements
  
 The following is an open-ended exercise -- more like a 
 PROJECT.
                                                         
 Exercise 4. The sets 
         set(T,P) 
         set(T,¬P) 
 for T:type and P:T"prop might be considered as 
 "abstract" complement sets. Explore what one might be 
 able to deduce about abstract complement sets using 
 autolog systems, and what the limitations are.
  
  
  


