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 §1 Autolog metalogic for Category Algebraic Types 
         --  CATs
  
 There would be many ways to express category theory(s)
 in autolog.  The style chosen here emphasizes an 
 interesting mixture of category notions and type 
 notations.  As with the previous lectures, the type 
 notations have the main purpose of establishing an 
 indexicality regimen for the inference rules and equality 
 modulators.
  
 Here are some basic inference forms (rules and 
 modulators) for CAT:
                                                         «
      true => cat:type.        //                      1
      C:cat => obj(C):type.    // objects              2
      X:obj(C), Y:obj(C) =>    // maps                 3
             X"Y:type.         
      X:obj(C), Y:obj(C), Z:obj(C), // composition     4 
           F:X"Y, G:Y"Z => F∘G:X"Z. 
      (F∘G)∘H = F∘(G∘H).            // associativity   5
      %% identity maps
      X:obj(C) => id(X):X"X.                  //       6
      X:obj(C), Y:obj(C), F:X"Y => id(X)∘F=F. //       7
      X:obj(C), Y:obj(C), F:X"Y => F∘id(Y)=F. //       8
                                                         »
 Rule 2 makes obj(C) a dependent type.  In rule 3 this 
 makes X"Y also a dependent type implicitly.  This would 
 be an example of the indexicality of the consequent 
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 literal: X and Y are indexed in the antecedent, and that 
 indexing forces the dependence on C.  One could force the 
 implicit typing to look explicit like this:
                                                         «
      X:obj(C), Y:obj(C) =>     // dependence on C     3'
             X->Y(C):type.  
      hom(X,Y,C)=X"Y(C).    // 2 notations, same type
                                                         »
 See the previous lectures for the definition (and 
 examples) of autolog indexicality and various typing
 notational conventions.
  
 Notice that the modulator for associativity of ∘ (in 5) 
 is also implicitly typed, assuming that ∘ is only used
 in the theory for composition of morphisms.
  
 { The « » notation encloses autolog source code and 
 forces all outside text to be our commentary. Compiling  
 the text lecture from the autolog editor will compile  
 only the « » included sections. }
  
 §2  Morphism definional types
  
 A "monomorphism" is a morphism which is left cancellable  
 for composition.  The autolog definition amounts to two 
 rules, one unfolding the meaning of "mono" and one 
 supplying a condition for concluding that a morphism 
 is mono.  For example,
                                                         «
    F:X"Y, F:mono, G:Y"Z, H:Y"Z, F∘G=F∘H => G=H.  
    F:X"Y,  ∀((G:Y"Z) ∧ (H:Y"Z), (F∘G=F∘H)"(G=H))
                  => F:mono.  
                                                         »
 As in Lecture #2 and #3, the ∀-form serves as a "lemma":

John Fisher
2



 Prove the lemma in order to conclude that F is mono. 
 Establishing such a ∀-lemma is illustrated in 
 previous lectures.
  
 EXERCISE A. Give a similar definition for "epimorphism" 
 (right cancellable morphism).
  
 Then the bimorphism type could be defined as 
                                                         «
    bi = (mono' x 'epi).       
                                                         »
 Recall from Lecture #3 that x (product) types would 
 satify the type modulator
                                                         «
    A:T' x 'S = (A:T)∧(A:S).
                                                         »
 An "isomorphism" has an existential definition
                                                         «
    F:X"Y, F:iso => G:Y"X, F∘G=id(X), G∘F=id(Y).  
    F:X"Y, G:Y"X, F∘G=id(X), G∘F=id(Y) => F:iso.  
                                                         »
 which is conveniently defined usuing a coherent logic 
 form without needing to introduce an ∃-lemma.  
  
 EXERCISE B. Using similar autolog expressions, define 
 "endomorphism" type using rules and "automorphism" type
 in terms of endomorphism and isomorphism  using a type 
 modulator.
  
 §3  Autolog Functor metalogic 
  
 A "functor" type depends on (is indexed via) two categorie
 a source C and a target D.
                                                         «

John Fisher
3



      C:cat, D:cat => fnctr(C,D):type.
      F:fnctr(C,D), X:obj(C) => F(X):obj(D).
      F:fnctr(C,D) => F:covariant | F:contravariant.
                                                         »
 The familiar functor rules might be expressed like this
                                                         «
      F:fnctr(C,D), X:obj(C), Y:obj(D), 
         G:X"Y, F:covariant => F(G):F(X)"F(Y).
      F:fnctr(C,D), X:obj(C), Y:obj(D), 
         G:X"Y, F:contravariant => F(G):F(Y)"F(X).
                                                         »
 Notice that an antecedent literal like 'F:fnctr(C,D)'  
 can occur without explicitly typing C and D.  Why? 
  
 §4  Autolog natural transformation metalogic
  
 A "natural transformation" is a relation between 
 functors.
                                                         «
 C:cat, D:Cat, 
    F:functor(C,D), G:functor(C,D) 
          => nat(F,G):type.   // nat(F,G):type
                                                         »
 N:nat(F,G), F:functor(C,D), G:functor(C,D)   
         X:obj(C) => 
              N(X):F(X)"G(X).
 F:functor(C,D), G:functor(C,D), N:nat(F,G), 
         X:obj(C), Y:obj(C),  H:C"C,=> 
              N(Y)∘F(H) = G(H)∘N(X).  //   Fig.1
                                                         »
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                           F(H)
                     F(X)------>F(Y)
                       |          |
                  N(X) |    ∙     | N(Y) 
                       v          v
                     G(X)------>G(Y)
                           G(H)
  
                           Fig.1
  
 A "natural isomorphism" of covariant functors F and G is 
 a natural transformation N such that for each relevant X, 
 N(X) is an isomorphism.
  
 EXERCISE A.  Formulate an autolog definition for natural
 isomporphism.
  
  
  
 ---------------------------------------------------------
 .. to be continued
 ---------------------------------------------------------
  
  
 § References 
 Compare usual definitions for category concepts find 
 here:
  
    1. https://en.wikipedia.org/wiki/Category_theory
    2. https://ncatlab.org/nlab/show/category+theory
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