
 █
 #4
 AUTOLOG CATEGORY METALOGIC
 8/16/2019

 §1 Autolog metalogic for Category Algebraic Types
 -- CATs

 There would be many ways to express category theory(s)
 in autolog. The style chosen here emphasizes an
 interesting mixture of category notions and type
 notations. As with the previous lectures, the type
 notations have the main purpose of establishing an
 indexicality regimen for the inference rules and equality
 modulators.

 Here are some basic inference forms (rules and
 modulators) for CAT:
 «
 true => cat:type. // 1
 C:cat => obj(C):type. // objects 2
 X:obj(C), Y:obj(C) => // maps 3
 X"Y:type.
 X:obj(C), Y:obj(C), Z:obj(C), // composition 4
 F:X"Y, G:Y"Z => F∘G:X"Z.
 (F∘G)∘H = F∘(G∘H). // associativity 5
 %% identity maps
 X:obj(C) => id(X):X"X. // 6
 X:obj(C), Y:obj(C), F:X"Y => id(X)∘F=F. // 7
 X:obj(C), Y:obj(C), F:X"Y => F∘id(Y)=F. // 8
 »
 Rule 2 makes obj(C) a dependent type. In rule 3 this
 makes X"Y also a dependent type implicitly. This would
 be an example of the indexicality of the consequent

John Fisher
1

 literal: X and Y are indexed in the antecedent, and that
 indexing forces the dependence on C. One could force the
 implicit typing to look explicit like this:
 «
 X:obj(C), Y:obj(C) => // dependence on C 3'
 X->Y(C):type.
 hom(X,Y,C)=X"Y(C). // 2 notations, same type
 »
 See the previous lectures for the definition (and
 examples) of autolog indexicality and various typing
 notational conventions.

 Notice that the modulator for associativity of ∘ (in 5)
 is also implicitly typed, assuming that ∘ is only used
 in the theory for composition of morphisms.

 { The « » notation encloses autolog source code and
 forces all outside text to be our commentary. Compiling
 the text lecture from the autolog editor will compile
 only the « » included sections. }

 §2 Morphism definional types

 A "monomorphism" is a morphism which is left cancellable
 for composition. The autolog definition amounts to two
 rules, one unfolding the meaning of "mono" and one
 supplying a condition for concluding that a morphism
 is mono. For example,
 «
 F:X"Y, F:mono, G:Y"Z, H:Y"Z, F∘G=F∘H => G=H.
 F:X"Y, ∀((G:Y"Z) ∧ (H:Y"Z), (F∘G=F∘H)"(G=H))
 => F:mono.
 »
 As in Lecture #2 and #3, the ∀-form serves as a "lemma":

John Fisher
2

 Prove the lemma in order to conclude that F is mono.
 Establishing such a ∀-lemma is illustrated in
 previous lectures.

 EXERCISE A. Give a similar definition for "epimorphism"
 (right cancellable morphism).

 Then the bimorphism type could be defined as
 «
 bi = (mono' x 'epi).
 »
 Recall from Lecture #3 that x (product) types would
 satify the type modulator
 «
 A:T' x 'S = (A:T)∧(A:S).
 »
 An "isomorphism" has an existential definition
 «
 F:X"Y, F:iso => G:Y"X, F∘G=id(X), G∘F=id(Y).
 F:X"Y, G:Y"X, F∘G=id(X), G∘F=id(Y) => F:iso.
 »
 which is conveniently defined usuing a coherent logic
 form without needing to introduce an ∃-lemma.

 EXERCISE B. Using similar autolog expressions, define
 "endomorphism" type using rules and "automorphism" type
 in terms of endomorphism and isomorphism using a type
 modulator.

 §3 Autolog Functor metalogic

 A "functor" type depends on (is indexed via) two categorie
 a source C and a target D.
 «

John Fisher
3

 C:cat, D:cat => fnctr(C,D):type.
 F:fnctr(C,D), X:obj(C) => F(X):obj(D).
 F:fnctr(C,D) => F:covariant | F:contravariant.
 »
 The familiar functor rules might be expressed like this
 «
 F:fnctr(C,D), X:obj(C), Y:obj(D),
 G:X"Y, F:covariant => F(G):F(X)"F(Y).
 F:fnctr(C,D), X:obj(C), Y:obj(D),
 G:X"Y, F:contravariant => F(G):F(Y)"F(X).
 »
 Notice that an antecedent literal like 'F:fnctr(C,D)'
 can occur without explicitly typing C and D. Why?

 §4 Autolog natural transformation metalogic

 A "natural transformation" is a relation between
 functors.
 «
 C:cat, D:Cat,
 F:functor(C,D), G:functor(C,D)
 => nat(F,G):type. // nat(F,G):type
 »
 N:nat(F,G), F:functor(C,D), G:functor(C,D)
 X:obj(C) =>
 N(X):F(X)"G(X).
 F:functor(C,D), G:functor(C,D), N:nat(F,G),
 X:obj(C), Y:obj(C), H:C"C,=>
 N(Y)∘F(H) = G(H)∘N(X). // Fig.1
 »

John Fisher
4

 F(H)
 F(X)------>F(Y)
 | |
 N(X) | ∙ | N(Y)
 v v
 G(X)------>G(Y)
 G(H)

 Fig.1

 A "natural isomorphism" of covariant functors F and G is
 a natural transformation N such that for each relevant X,
 N(X) is an isomorphism.

 EXERCISE A. Formulate an autolog definition for natural
 isomporphism.

 .. to be continued

 § References
 Compare usual definitions for category concepts find
 here:

 1. https://en.wikipedia.org/wiki/Category_theory
 2. https://ncatlab.org/nlab/show/category+theory

John Fisher
5

 █

