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                  AUTOLOG TYPE METALOGIC
                         8/13/2022 (corrected)
  
 §1  Type terms and term types
  
 Consider the following autolog metalogic inference rule:
  
      T:type => list(T):type.
  
 Both of the literal expressions of the rule are a 
 "typing term",  'T:type' expressing a judgement of 
 type and the term 'list(T)' is a "term type", an 
 algebraic term expressing a type. These patterns  
 continue throughout this lecture note. 
                
 The grammar for autolog is described in Chapter 3 of 
 [1] https://
    skolemmachines.org/autolog/docs/AutoLog_Design.pdf
  
 Almost every autolog grammatical category is a "term": 
 literals, functions, operators, judgements, ...
  
 For the examples given in the following sections I 
 mostly use notations very similar to those used in the 
 following articles 
 [2] https://
    en.wikipedia.org/wiki/Intuitionistic_type_theory
 [3] https://
    plato.stanford.edu/entries/type-theory-intuitionistic/
  
 Ref[3] has a very nice table displaying dual symbolic 
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 operators for intuitionistic logic and intuitionistic 
 type theory.  Here is a version of that table:
  
               logic    type
                 ⊥        ∅
                 ⊤        1 
                A∨B      A+B 
                A∧B      A×B
                A⊃B      A&B    
               ∃x:A.B    Σx:A.B 
               ∀x:A.B    Πx:A.B
                --------------
                 =        = :     (added)
  
 In Ref[3,§2.4] the author writes an '=' between the logic 
 entries and the corresponding type entry.  This might be  
 somewhat misleading in this lecture however.  I will 
 attempt to only use the logic operators in contexts for 
 logic and the type operators in contexts for types, 
 especially in typing contexts (typing term)
  
                     Lterm : Tterm
  
 where Lterm is a logic term and Tterm is a type term.
 The examples in the following sections will employ 
 visually similar symbolism, respecting the logic/type 
 distinction just made. (*However, I use & instead of ⊃ 
 for logic terms.)  The primary theme for this lecture 
 will be the autolog interplay between term logic and term 
 type computed by autolog inference programming.  The 
 autolog language itself is still under development, so 
 the examples serve as a motivation of the language design 
 changes and refinements.
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 ----------------------------------------------------------
  
 §2  ⊥ ∅ , ⊤ 1,  2
  
 See also Lecture Notes #1.
  
 The terms P&⊥, P:∅ and ¬P might be characterized 
 using several rules or modulators, including the 
 following: 
         
           rule                modulator
        P&⊥ => P:∅.           P&⊥ = P:∅.
        P:∅ => P&⊥.           P:∅ = P&⊥.
        P&⊥ => ¬P             P&⊥ = ¬P.
        ¬P => P&⊥.            ¬P = P&⊥.
        P:0 => ¬P.            P:∅ = ¬P.
        ¬P => P:∅.            ¬P = P:∅.
        A:T, A&⊥ => T=∅.
  
 These are ⊥-logic, ∅-type dual correspondences.
  
 The terms ⊤&P and P:1 might be characterized as follows:
  
          rule                modulator
        ⊤&P => P:1.          ⊤&P = P:1.
        P:1 => ⊤&P.          P:1 = ⊤&P.
        ⊤&P => P.            ⊤&P => P.
        P => ⊤&P.            P = ⊤&P. 
  
 The 2 type, intended to express two distinct outcomes,
 might be employed to express a restricted law of excluded 
 middle (LEM), as follows:
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          rule               modulator
        P:2 => P | ¬P.       P:2 = P∨¬P. 
  
 Notice that the modulator cannot use P|¬P as a term 
 because '|' is not a term operator for autolog. '|' is 
 only a separator for rule consequents. However, as in 
 lecture #1 one could also employ the rule 
  
      P∨Q => P | Q.
  
 to unfold P∨¬P into consequent P|¬P.   
  
 EXERCISE C.  Write a small autolog program/theory where
 some predicates require or "enjoy" LEM and some do not. 
 Give an answer (a) where some of the rules/modulators of 
 this section are employed, and an answer (b) where none of
 the rules or modulators above are employed. 
  
 The rules/modulators in this § might lead to unintended 
 inferences for some theories when used for term contexts 
 other than rule literals.  
  
 ----------------------------------------------------------
  
 §3  ∧  x 
  
 This section illustrates some examples involving the 
 autolog inferential interplay between ∧ logic and x type.
  
 EXAMPLE 1. The following specification defines a pair. 
  
      S:type, T:type, 
         X:S, Y:T => pair(X,Y):S⨯T.              //1 
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 In a rule like this we might refer to pair(X,Y) as the 
 "constructor" term for the "type" term T⨯S, and the
 rule describes this "construction".  The '⨯' is a 
 defined  operator, whose context defines it as an infix 
 autolog operator (functor) of arity 2.  Autolog will 
 display the internal form as T⨯S, without quotes.
 (The ⨯ operator can be selected from the code menu of 
 the autolog editor, "cross product".)
  
 A "deconstructor"rule, might be formulated conversely  
  
     pair(X,Y):SxT => S:type, T:type, X:S, Y:T.            
  
 or, employing logic ∧ dual to x
  
     pair(X,Y):SxT => (S:type) ∧ (T:type), X:S ∧ Y:T.    
  
 As in Lecture #1, we could also employ the rule           
  
     P∧Q => P, Q.
  
 to unfold embedded logic terms into autolog rule literals.
  
 The constructor and deconstructor rules form a definition
 for the type. Autolog does not reserve the names 'type' 
 nor 'pair' for any fixed usage other than what the 
 programmmar specifies by the rules. 
  
 Consider this problem (using //1)
  
      true => int:type, float:type, 
                  2:int, 2.0:float.        //data
      pair(2,2.0):int x float => goal.     //goal rule
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 An easy autolog verification tree for goal is  
  
                 true
                   |                     //data ...
                int:type
                   |
                float:type
                   |
                 2:int
                   |
                2.0:float
                   |                     //1   
       pair(2,2.0):int x float
                   |                     //goal rule
                  goal
  
 Using terminology from the literature we could say that 
 this derivation does establish that pair(2,2.0) 
 "inhabits" the type int x float.  We will reconsider 
 versions of "inhabiting" in the sequel
  
 {We could just as well have used notation pair(S,T) for 
 the type rather than SxT, but I wanted to illustrate the 
 ∧,x duality.}
  
 For a quick references regarding dependent types, see
 [4]
    https://en.wikipedia.org/wiki/Dependent_type
  
 For a dependent pair type consider the following 
  
 EXAMPLE 2. The following specification defines an ordered 
 pair for a relation R on type T. 
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      T:type, R:T&T&T, X:T, Y:T, R(X,Y)      //2
                => ord_pair(R,X,Y):ord_pair(R,T,T).
  
 EXERCISE A. Invent an autolog program deploying //2 that 
 supports the following goal. 
    ord_pair(lesseq,1,3):ord_pair(lesseq,int,int) => goal.
  
 The next example illustrates some possible inference 
 relationships between ∃ logic expressions and SxT types.
 Lecture #2 has other examples for ∃ logic.
  
  
 EXAMPLE 3. This example employs some ∃-logic for deriving 
 witness for the pair of EXAMPLE 1.
  
    true => int;type, ∃(X:int).  // a- there is an integer
    ∃(X:S) => (X:S).             // b- autolog unfold
    S:type, T:type,              // c- pair constructor
       X:S, Y:T => pair(X,Y):SxT.                   
    A:int x int => goal.         // d- A = answer
  
 The following autolog proof supplies an inhabitant 
 (answer) for goal question.
  
                 true
                   |         a- generate Skolem constant   
                ∃(a:int)     
                   |         b- unfold ∃
                 a:int 
                   |         c- pair constructor rule  
          pair(a,a):int x int 
                   |         d- Q=pair(a,a) is answer
                  goal
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 As an aside, in autolog one can define a pair (X,Y) using 
 intput ''(X,Y).  (The functor name is '' which does not 
 show in toString() display).  So, an alternate 
 formulation for a constructor/deconstructor pair might 
 look something like this (displayed without quotes ''):
  
      S:type, T:type, X:S, Y:T => (X,Y):SxT.              
      (X,Y):SxT => (S:type) ∧ T:type, X:S ∧ Y:T.    
  
 and a judgement modulator equation might look like this
  
            (X,Y):SxT = (X:S) ∧ (Y:T).
  
 EXERCISE D.  Formulate an autolog lemma which justifies 
 the x type modulator equation  (RxS)xT = Rx(SxT). 
 (Hint, see EXAMPLE 4 below, re type operator +.)
  
 ----------------------------------------------------------
  
 §4  ∨  + 
  
 A simple specification of type + logic would be the 
 modulator equation
  
            X:S+T = (X:S)∨(X:T).
  
 Autolog constructor rules might look like this
  
      S:type, T:type => S+T:type.      // -a
      S:type, T:type, X:S => X:S+T.    // -b
      S:type, T:type, X:T => X:S+T.    // -c
  
 and deconstructor 
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      X:S+T => X:S | X:T.              // -d
  
 S+T represents "type cases" or "alternatives".
  
 EXAMPLE 4. The following problem explores + type logic 
 for three types R, S, T.  Assume that rules a, b, c and d 
 are included, in addition to 
  
       true => R:type, S:type, T:type,
               z:(R+S)+T.
       z:R+(S+T) => goal.
  
 The following is a proof tree:
  
                            true
                              |
                    R:type - S:type - T:type
                              |
                          z:(R+S)+T
                          /   d    \       
                   z:(R+S)          z:T
                  /  -d-  \          |     -a    
                z:R       z:S     S+T:type
                 |    a    |         |     -c
              S+T:type   S+T:type   z:S+T
                 |    b    |  -c     |
              z:R+(S+T) z:R+(S+T) z:R+(S+T)
                 |         |         |
                goal      goal      goal
  
 This problem is a kind of "lemma".  It shows that the 
 autolog rule     
  
               X:(R+S)+T => X:R+(S+T).
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 is a derived rule that can be included along with rules 
 a, b, c, and d.
      
 EXERCISE E.  Prove a lemma showing that  
  
           X:R+(S+T) => X:(R+S)+T.
  
 is a derived rule.  
  
 Thus, the modulator
  
          X:R+(S+T) = X:(R+S)+T.
  
 could be used for judgements. Also, the modulator 
  
           R+(S+T) = (R+S)+T.
  
 might be employed for type term.  (The issue of context  
 is being ignored for now.)
  
 ----------------------------------------------------------
  
 §5  ∀  Π
  
 Using Π as a dependent type constructor is 
 illustrated first.  Consider functions of a type t such 
 that
  
      F:int->int x int, X:int => Y:int, F(X)=(X,Y).
  
 Such functions F(X)=(X,?) use the input argument X to 
 assign some pair (X,?) as output. The particular function 
 g(X)=(X,4), all X, is an instance of such a function. 
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 EXAMPLE 5. The Π(N:int)(N x int) can represent the 
 dependent type t, characterized via ∀ using the rule
                                 
    F:int&int x int, ∀(X:int)(∃(Y:int)(F(X)=(X,Y))) =>
               F:Π(N:int)(N x int).
  
 EXERCISE F.  Employing the autolog rule just above, write 
 an autolog rule specifying the function g(X)=(X,4) 
 mentioned before example 5,  and then prove the goal
  
               g:Π(N:int)(N x int) => goal.
  
 Notice that ∀ logic is employed to establish a witness 
 for this kind of dependent function Π type.  
  
 Another Π type representation is related to S&T types,
 and which has a succinct modulator formulation:
    
                  S&T = Π(X:S)(X:T).
  
 The modulator applies to type term contexts only.
 Expressed as an autolog rule, we would have something 
 like
  
   S:type, T:type, ∀(X:S)(X:T) =>∀(X:S)(X:T):S&T.
  
 Generally, derived ∀ logic expressions serve as witness
 evidence to related Π types.  An example of such a 
 withness judgement expression would be  
                    
                  ∀(X:T)(P(X)) : Π(X:T)(P(X)) 
  
 so long as context for a rule gives indexicality to the 
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 terms, such as T:type ∧ P:T&prop (indicating that P(X) 
 would be used as a literal in a rule).  
  
 This approach uses a logic expression in a judgement for
 a related type expression L:T to indicate that there is 
 some relevant derivation of L to bear witness to the 
 type T.
  
 It should be stressed that autolog (at present) does not
 confine its ∀∃ΠΣ expressions as to argument profile. For
 example,
  
               ∀(X)((X:S) '⊃' (X:T)) = ∀(X:S)(X:T).
  
 parses and looks lite it expresses the intentions used 
 earlier in the notes. (Each of ∀∃ΠΣ is only restricted to 
 be a name for a functor expression.)  But such a 
 modulator would most likely require other rules of 
 modulators to be explicitly provided in order to carry 
 out the programmer's theory design.
  
 ----------------------------------------------------------
  
 §6  ∃  Σ 
  
 The following example illustrates an autolog rule pattern 
 where a (possibly non-discrete)∃-logic term inhabits a
 Σ-type term.
  
 EXAMPLE 5. Explore unfoldings for the the first rule, 
 which illustrates a kind of "∃:Σ" duality:
  
     T:type, P:T&prop, ∃(X:T)(P(X)) 
            => ∃(X:T)(P(X)) : Σ(X:T)(P(X)).       //- a
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     true => t:type, 0:t, s:t&t, e:t&prop, e(0).  //- b
     X:t, e(X) => e(s(s(X))).                     //- c
     X:T, E:T&2, E(X) => ∃(X:T)(E(X)).            //- d
     ∃(X:t)(e(X)) : Σ(X:t)(e(X)) => goal.         //- e
  
 Notice that in the //-a rule the leading literal 
 P:T&prop, if satisfied first, would supply values for P 
 and T, so that the next literal ∃(X:T)(P(X)) would be 
 predicative, and also the consequent judgement. This is a 
 common pattern mentioned in previous lecture notes.
 (A judgement satisfied can predicate following 
 expressions in a rule.)
   
 EXERCISE F. 
   (i) Construct a proof tree for Example 4. 
       (Hint see Lecture notes #2)
   (ii) What "witnesses/inhabits" the type in the goal?
   (iii) Can one use autolog to prove that the inhabited 
        type in the goal is not finite? 
        (Since autolog is not yet fully specified, attempt 
        to guess at a reasonable answer.)
  
 The next example ilustrates how a theory with ∨-case 
 habitation is derivation-inhabited, according to autolog. 
  
 EXAMPLE 6. This example ilustrates how a Σ-type with 
 ∨-case witnesses is derivation-inhabited, according to 
 autolog:
  
     T:type, P:T&prop, ∃(X:T)(P(X)) 
            => ∃(X:T)(P(X)) : Σ(X:T)(P(X)).      //- a
     true => r:type, p:r&prop,                   //- b
              a:r, b:r, p(a)∨p(b).               
     P∨Q => P | Q.                               //- c
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     X:T, E:T&prop, E(X) => ∃(X:T)(E(X)).        //- d
     ∃(X:t)(e(X)) : Σ(X:t)(e(X)) => goal.        //- e
  
 and here is a derivation of the goal ...
  
                      true
                        |                         -b
                  r:type  p:r&prop
                        |                         ..
                     a:r  b:r
                        |                         ..
                    p(a)∨p(b)
                     /     \                      -c
                  p(a)     p(b)
                   |          |                   -d
            ∃(a:e)(p(a))   ∃(b:r)(p(b))
                  |              |                -a
      ∃(a:e)(p(a)):∃(a:e)(p(a))  |
                  |     ∃(b:e)(p(b)):∃(b:e)(p(b))
                  |              |                -e   
                 goal           goal
  
 Rule c in this example does not type it's variables.
 One might say that the typing is "implicit" via the ∨.
 At the current time, no autolog process "checks" that 
 kind of typing. 
  
 ----------------------------------------------------------
  
 §7  Inductive types
  
 The example given here is a reworking of Example 12(p.18)
 of
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 [4]https://www.SkolemMachines.ORG/reports/colog/colog.pdf 
  
 which was formulated for coherent logic with functions.  
 The link has a discussion relating the colog formulation 
 to a coq problem problem specification. This was one of 
 problems motivating the design for autolog as an 
 extension of colog.
  
 EXAMPLE 7. This problem specifies an inductive list type 
 and an inductive length function whose specs are 
 intertwined. 
  
      length(cons(s(0),cons(s(s(0)),nil)))=s(s(0)):nat 
                      => goal.  // show length([1,2])=2 
         
      T:type => nil:list(T).
      T:type, X:T, L:list(T) => cons(X,L):list(T).
      
      true => nat:type.
      X:nat => s(X):nat.  // "X+1"
      
      true => length(nil)=0:nat.
      L:list(T), X:T => 
                length(cons(X,L))=s(length(L)):nat.
      
      X:T => X=X:T.  
      X=Y:nat => Y=X:nat.
      X=Y:nat, Y=Z:nat => X=Z:nat.
      
      X=Y:nat => s(X)=s(Y):nat.
      X=Y:nat => length(X)=length(Y):nat.
  
 This is a notational reformulation of a problem 
 (x12alt.co) computed by colog14I.
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 See §8 below for more re A=B:T notation.
  
 ----------------------------------------------------------
  
 §8  = , =:
  
 A judgement like 5=2+3:nat is supposed to convey at least 
 the term typing information specified by the following 
 modulator:
  
               (X:T)∧(Y:T)∧(X=Y) = (X=Y):T.
  
 It is unlikely that a modulator regimen (as envisioned 
 for autolog) would support unique term reduction derived 
 via equality reasoning as practiced in algebraic logic.  
  
 For example, 5=2+3 might recursively derive via 
                   s(s((s({s(s(0))})))) 
                     --3--   --2--
 or
                   s((s({s(s(s(0)))}))) 
                     --2--   --3--
 using technically distinct derivations.  The result of 
 the reductions are identical, but the derivation steps in 
 the reductions are not identical.
  
 Another design issue affecting autolog is that implicitly
 typed equality modulations are convenient but may not 
 impose strict type indexing, as illustrated by the 
 following example.
  
 EXAMPLE 8. The following problem uses no explicit type 
 judgements for its logic terms.
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      true => ¬(p(a)∨q(a)).   //- a
      ¬(A∨B)=¬A∧¬B.           //- b    
      P∧Q => P,Q.             //- c
      ¬q(Z) => goal.          //- d
  
 A simple derivation tree looks like this
  
                      true
                        |            -a
                  ¬(p(a)∨q(a))
                        |            -b
                   ¬p(a)∧¬q(a)
                        |            -c
                      ¬p(a)
                        |            -c
                      ¬q(a)
                        |            -d
                       goal (Z=a)
  
 The modulator at b applies implicitly to the derivation
 term implicitly (the match of the Aterm ¬(A∨B) of the 
 modulator.)  This sort of typeing by context is 
 convenient.  There is at present no explicit type check
 mechanism for autolog that allows this implicit typeing.
  
 Exercise G.  Suggest a typing regimen where type judgment
 controls the index-applicability for example G.
  
 ----------------------------------------------------------
  
 §9  Universes 
  
 Autolog, at present, imposes no restrictions on type 
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 universes.  I have used a lax "--:type" notation to 
 create indexical terms for type names. Other type names
 chosen for the examples in this note were chosen for 
 intuitive appeal.
  
 However, much more elaborate notations could be employed 
 to name and specify universes according to principles of 
 indexicality.
  
 At present, I prefer to allow universe programming specs
 that might lead to contradictory and/or paradoxical 
 theories; such things are also interesting.
  
 More on this later ...
  
 ----------------------------------------------------------
  
 §10 Algebraic logic type algebras ... ?
  
 There are prospects for extending the "logic:type" 
 program design formalisms in this lecture note. There are 
 at least two possibilities, each of which has been 
 employed in this note:  One is the coherent-form rule 
 mechanisms, others are the rather tighter mechanisms 
 using modulator equations for logic terms, type terms, 
 and judgement terms. Various examples have been given in 
 the previous sections of this note. 
  
 In the near future, this section or another lecture note 
 will be devoted to the issue of "algebraic logic type 
 algebras" in a more systematic manner.  Does this suggest
 "symmetry" or "duality"?
  
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~█
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 §11 propositions as types (hott)
  
 Here is a definition from the preprint SB
        https://github.com/UniMath/SymmetryBook
  
 "Let P be a type. The property that P has at most 
 one element may be expressed by saying that any two 
 elements are equal. Hence it is encoded by 
 Π(a,b:P, a=b). We shall call such a type a proposition, 
 and its elements will be called proofs."   
  
 Here is one partial autolog formulation of the defining
 condition for a proposition:
                                 «
    P:prop => P:type. 
    P:prop, A:P, B:P => A=B. 
                                 »
 to which we add some extension:
                                 «
    true => rs:prop.
    P:prop, X:P => P.  // W  
    true => p.
    true => q.
    p => r:rs.
    q => s:rs.
    rs => goal.
                                  »
 Now there are TWO DISTINCT autolog proofs of the goal 
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       true          true
         |             |
       rs:prop       rs:prop
         |             |
         p             q
         |             |
        r:rs          s:rs
         |- 1          |- 2
         rs            rs
         |            |  
        goal          goal
  
 The first (1) is uses r:rs as a witness for rs in W, and 
 the second (2) is using s:rs as a withness for rs in W.
  
 So NOT all autolog proofs of proposition rs are 
 identical, one using r (from p) and the other using s 
 (from q) as a witness.  
  
 This approach is like using either r or s as an indexing 
 for the same proposition rs. The witnesses r an s play 
 equivalent roles in different proofs, and r=s is also 
 deducible.  This also shows how autolog indexing can be 
 employed using a type statement X:T, and that either X 
 or T might be the indexing parameter.
  
 So, in an autolog machine proof a witnessed fact W:P 
 (bound) would not literally mean W is bound to an autolog 
 proof. Thus "...will be called proofs" is a metaphor used 
 in an otherwise formal mathematical context. (Coq may 
 also reveal different verifications, depending on loaded 
 library.)
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 Here is another definition from SB:
  
 "Let X be a type. If for any x:X and any y:X the identity 
 type x=y is a proposition, then we shall say that X is a 
 set. The reason for doing so is that the most relevant 
 thing about a set is which elements it has; distinct 
 identifications of equal elements are not relevant."
  
 This definition may be awkward to unwind as an autolog 
 program, so I'll leave it alone for now ... 
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