

 #1
 EXAMPLES OF
 AUTOLOG METALOGIC
 2/6/2019

 §1 Heyting term algebra, modulators and rules

 All of the examples in this lecture are intended to
 illustrate a metalogic based upon Heyting algebraic logic
 terms embedded into autolog code. It is possible to
 employ other algebraic logics in a similar manner (a
 topic for subsequent lecture notes).

 For quick reference to background information regarding
 Heyting algebra, see

 https://en.wikipedia.org/wiki/Heyting_algebra

 In this lecture note, we will use the following symbolic
 notation for the intended Heyting operators:

 meet ∧
 join ∨
 less or equal ≤
 residual $
 negation ¬
 least/bottom ⊥
 greatest/top ⊤

 These notes were written using the autolog editor, in
 order to capture symbolic notations faithfully.

John Fisher
1

 Most of the examples describe how one can write codes
 that express some intended metalogic either as term
 algebra or a literals in autolog. Small programs are also
 given so as to illustate autolog computations.

 There are two styles for coding algebraic logic axioms.
 One style employs coherent form rules and the other
 employs equality modulators (implemented as rewrite).

 As a first example, let us carefully consider the
 difference between the autolog modulator

 A∧B=B∧A. // term modulator

 and the autolog rule

 A∧B => B∧A. // inference rule

 Both express similar intentions but result is different
 behaviors for the inference engine. Both forms are
 "autolog inferences". To illustrate the difference
 suppose that we have only the one fact

 true => (a∧b)∨c.

 and the start of an inference tree

 true
 |
 (a∧b)∨c
 |
 ?

 If the term modulator is part of our theory then we

John Fisher
2

 also have the tree term inference

 true
 |
 (a∧b)∨c
 |
 (b∧a)∨c

 abtained by matching the left side of the modulator
 in the tree term (a∧b)∨c, substituting a∧b by b∧a and
 asserting the tree term (b∧a)∨c. The modulator can
 act at the term level, the rule can only infer at
 literal level.

 On the other hand, the rule would not apply to terms
 inside a tree term, so the last inference is not possible
 possible. Obviously, modulators are more active in such
 situations. If the term modulator is included in our
 program, then the inference rule is redundant.

 A modulator equality

 L=R.

 substitutes instances of L (the left Lterm) in a fact
 tree term by the corresponding instance of R (the right
 Rterm), and not vice versa.

 A match regimen for a modulator can be illustrated
 using a simple example. Suppose that our theory is

 true => a=a+c.
 a=b. // M (rewrite a as b)

John Fisher
3

 Here is a simulation of branch action for this theory

 true
 |
 a=a+c 0
 ----|----
 b=a+c 1
 |
 a=b+c 1
 ----|----- |
 b=b+c 2
 |x
 b=b+c 2 ignored, not new

 In this simulation, modulator M is used on each of the
 individual instances of a in the fact at stage 0,
 producing modulants at stage 1. In stage 2, M modulates
 remaining instances of a in the proof terms of stage 1.
 Any repeated fact is ignored (not actually added to the
 branch). An incremental saturating modulation regimen such
 as this would, over successive stages, assert a complete
 branch set of modulants.

 Generally speaking, both modulators and definite rules
 use a level-saturation methodology (described more fully
 in the Autolog design document).

 At present, the only way to index modulators is via
 the Lterm (operators or constants). Thus, for example,
 if we wan t to include the modulator

 A∨B=B∨A.

 it should be the case the modulator makes sense for

John Fisher
4

 ANY instance A∨B that might occur on a proof tree branch.
 This means that variables A and B are "virtually indexed"
 by occurring in the Aterm of the modulator, rather than
 some "esplicit index" such as A:T and B:T for some T.
 We leave this as an open design issue at this time.

 --

 §2 Folding and unfolding metalogic rules

 An "unfolding" rule replaces a term algebra expression by
 literals. Unfolding rules for ∧ and ∨ could be

 ⊥ => false.
 A∧B => A, B.
 A∨B => A | B.

 A "folding" rule replaces literal terms by an appropriate
 term algebra expression. Unfolding rules for ∧ and ∨
 could be

 true => ⊤.
 A, B => A∧B.
 A, B:prop => A∨B.

 Note that a literal like 'B:prop' (for example) is needed
 to fix a referent/index for B in the consequent of the
 second rule. A rule like the following would not be what
 is really intended

 A => A∨B.

 because an application of this rule would result in a
 Skolem constant replacing 'B' in the consequent, which

John Fisher
5

 would entail "some" B rather than "any" B. However, the
 literal term 'B:prop' employed above is just an example,
 and in practice some other indexing for B might be
 appropriate.

 {The folding and unfolding rules given here as examples.
 Other versions are possible, and sometimes necessary,
 as in the case of the typing above. Sometimes it is wise
 to type all term variables as an indexing ploy, to limit
 the reference of term variables and for efficiency of
 autolog computations.}

 For $, we might have

 A$B, A => B.

 and/or, as a modulator,

 A$B ∧ A = B.

 For ¬, we have

 ¬A, A => false.

 Notice that this rule is preferable to

 A, ¬A => false.

 It is usual for autolog to satisfy antecedent literal
 terms from left-to-right. ¬A is indexed via its operator
 ¬, and a literal match (using an index table) provides a
 value for A, which either does or does not match the
 second literal of the preferred form of the rule. In the
 alternate rule, much more work may be required to

John Fisher
6

 first achieve a match for A and then locate ¬A.

 Alternatively, we might employ modulators

 ¬A ∧ A = ⊥.
 ⊥ = false.

 For these examples, the choice of rule/modulator would be
 a programming style decision. Additional axioms could be

 P => ¬¬P. // better:
 P:prop, P => ¬¬P.
 A∧¬B => ¬(A$B).
 ¬(A$B) => ¬¬A ∧ B.

 The following modulator might be specified for some
 autolog programs, but would be considered as unsound
 as a substitution rule for P's not in an heyting
 algebra logic context.

 P=¬¬P. // NO

 To illustrate the style of reasoning with metalogic terms,
 consider the following problem.

 EXAMPLE 1.
 // rule has types, impredicativity, indexicality
 P:T$prop, Q:T$prop, X:T, P(X) => P(X)∨Q(X). // #1
 // coherent unfolding for ∨
 P∨Q => P|Q. // #2
 true => p:int$prop, q:int$prop, a:int. // data
 p(a) => qoal.
 q(a) => false.

John Fisher
7

 which has a proof tree

 true
 |- data
 p:int$prop
 |
 q:int$prop
 |
 a:int
 |- #1
 p(a) ∨ q(a)
 / #2 \
 p(a) q(a)
 | |
 goal false

 --

 §3 "ex falso (sequitur) quodlibet"

 "From contradiction every statement follows" --
 the principle of explosion -- but not for autolog
 inference generally. To specify EFQ explicitly for the
 metalogic under consideration, a rule like

 ⊥ => P.

 is NOT going to work since this only says, in effect, that
 some literal P can be inferred from bottom, not that all
 can be inferred. (That P is not indexical in the rule is
 also a problem).

 We might attempt to program EFQ as follows

John Fisher
8

 ⊥, P:prop => P.

 via a qualifying type judgement in the antecedent of the
 rule. This approach also indexes P. To enforce EFQ, rules
 would need to index all literals and include a similar
 inference for each indexed literal possible. One might
 only index certain chosen literals (smaller explosion).
 For example, consider this problem.

 EXAMPLE 2.
 true => ⊥, 1:int,
 p(2),
 q:int$prop .
 ⊥, P:int$prop: X:int => P(X). // Explode these.
 q(A) => goal. // via explosion specification

 Consider the following proof tree

 true
 |
 ⊥
 |
 1:int
 |
 q:int$prop
 |
 q(1)
 |
 goal

 Show that

 p(1) => goal.

John Fisher
9

 cannot be proved, because 'p' does not fit the explosion
 profile. The example (and this section) is intended to
 illustrate EFQ re autolog, nor to promote imposing EFQ,
 nor to promote avoiding EFQ. Either promotion would
 require more motivations.

 Another well known form of argument for explosion works
 by employing a rule like

 P => P∨Q.

 where one gets to impose that Q is "anything". However,
 the coherent form rule only says P∨Q for some Q
 (not all). In order to get irrelevant derivations, we
 could try something like the following, deriving that
 unicorns exist. But again, not everything follows
 automatically.

 EXAMPLE 3.
 true => p, ¬p.
 true => unicorns_exist:relevent.
 P, Q:relevent => P∨Q. // need to index Q.
 ¬P ∧ (P∨Q) => Q.
 unicorns_exist => goal.

 true
 |
 p
 |
 ¬p
 |
 unicorns:relevent
 |
 p ∨ unicorns_exist

John Fisher
10

 |
 unicorns_exist
 |
 goal

 I left out the rule

 ¬P,P => false.

 (which is indexical) because false in a derivation
 frame would have stopped the expansion of the branch,
 and that also would have stopped derivation of the
 irrelevant.
 --

 §4 Tree frames for metalogic

 An intuitionistic Kripke-like frame can be defined for
 the tree structures computed for a metalogic program by
 a Skolem machine.

 Suppose that our autolog theory includes the following
 axioms/rules:

 A∧B => A, B.
 A∨B => A | B.
 A$B, A => B.
 ⊥ => false.
 A$⊥ => ¬A. // or modulator
 // {A$⊥ = ¬A.}

 DEFINITION: A "branch (or frame) set" is a set of branch

John Fisher
11

 terms all contained in one contiguous Skolem tree branch.
 A branch frame "forces" a term provided that term can be
 deduced on a tail for any branch containing the branch set

 The following statements 1-4 are consequences of this
 definition of forces, and resemble the Kripke conditions
 for intuitionistic logic frames:

 1- If P is a term, branch set W forces P, and
 W ≤ U (subset) for branch set U, then U forces P.
 (monotonicity)

 2- If A∧B is term and branch set W forces A∧B,
 then W forces A and W forces B.

 3- If A∨B is a term and branch set W forces A∧B,
 then W forces A or W forces B.

 4- If A$B is a term, branch set W forces A,
 then W forces B.

 DEFINITION: If no branch set U ≥ W forces A,
 then W "supports" ¬A.

 Notice that in EXAMPLE 1, the initial branch set
 (up to the application of rule #1) forces
 p(a) ∨ q(a), but that no lower specific branch term
 is forced.

 EXERCISE 1. Formulate a reasonable definition of the
 notion of a term algebra corresponding to an autolog
 problem. (Hint: "Herbrand universe".) Give an example

John Fisher
12

 where neither P nor ¬P is forced, so ¬P is supported,
 for a term P in the relevant term algebra of the problem.

 EXERCISE 2. Express the rules (1-4) as autolog rules
 using a predicate forces(W,P).

John Fisher
13

John Fisher
corrected 3/26/2020

